河北省滦州第一中学2024年数学高二上期末学业水平测试试题含解析_第1页
河北省滦州第一中学2024年数学高二上期末学业水平测试试题含解析_第2页
河北省滦州第一中学2024年数学高二上期末学业水平测试试题含解析_第3页
河北省滦州第一中学2024年数学高二上期末学业水平测试试题含解析_第4页
河北省滦州第一中学2024年数学高二上期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省滦州第一中学2024年数学高二上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.2.已知向量a→=(1,1,k),A. B.C. D.3.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.4.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个5.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.36.不等式的一个必要不充分条件是()A. B.C. D.7.在中,B=60°,,,则AC边的长等于()A. B.C. D.8.已知正的边长为,那么的平面直观图的面积为()A. B.C. D.9.方程与的曲线在同一坐标系中的示意图应是()A. B.C. D.10.已知集合,则()A. B.C. D.11.下列对动直线的四种表述不正确的是()A.与曲线C:可能相离,相切,相交B.恒过定点C.时,直线斜率是0D.时,直线的倾斜角是135°12.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则_____________14.以抛物线C的顶点为圆心的圆交C于、两点,交C的准线于、两点.,,则C的焦点到准线的距离为____.15.矩形ABCD中,,在CD边上任取一点M,则的最大边是AB的概率为______16.定义离心率是的椭圆为“黄金椭圆”.已知椭圆是“黄金椭圆”,则_________.若“黄金椭圆”两个焦点分别为、,P为椭圆C上的异于顶点的任意一点,点M是的内心,连接并延长交于点N,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值18.(12分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.19.(12分)如图,四边形ABCD是正方形,四边形BEDF是菱形,平面平面.(1)证明:;(2)若,且平面平面BEDF,求平面ADE与平面CDF所成的二面角的正弦值.20.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.21.(12分)椭圆的左、右焦点分别为,短轴的一个端点到的距离为,且椭圆过点过且不与两坐标轴平行的直线交椭圆于两点,点与点关于轴对称.(1)求椭圆的方程(2)当直线的斜率为1时,求的面积;(3)若点,求证:三点共线.22.(10分)某校在全体同学中随机抽取了100名同学,进行体育锻炼时间的专项调查.将调查数据按平均每天锻炼时间的多少(单位:分钟)分成五组:,,,,,得到如图所示的频率分布直方图.将平均每天体育锻炼时间不少于60分钟的同学定义为锻炼达标,平均每天体育锻炼时间少于60分钟的同学定义为锻炼不达标(1)求a的值,并估计该校同学平均每天体育锻炼时间的中位数;(2)在样本中,对平均每天体育锻炼时间不达标的同学,按分层抽样的方法抽取6名同学了解不达标的原因,再从这6名同学中随机抽取2名进行调研,求这2名同学中至少有一名每天体育锻炼时间(单位:分钟)在内的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【题目详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D2、D【解题分析】根据向量的坐标运算和向量垂直数量积为0可解.【题目详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D3、D【解题分析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【题目详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.4、D【解题分析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【题目详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【题目点拨】关键点睛:利用方程特征进行求解判断是解题的关键.5、D【解题分析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【题目详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D6、B【解题分析】解不等式,由此判断必要不充分条件.【题目详解】,解得,所以不等式的一个必要不充分条件是.故选:B7、B【解题分析】根据正弦定理直接计算可得答案.【题目详解】由正弦定理,,得,故选:B.8、D【解题分析】作出正的实际图形和直观图,计算出直观图的底边上的高,由此可求得的面积.【题目详解】如图①②所示的实际图形和直观图.由斜二测画法可知,,,在图②中作于,则.所以.故选:D.【题目点拨】本题考查直观图面积的计算,考查计算能力,属于基础题.9、A【解题分析】方程即,表示抛物线,方程表示椭圆或双曲线,当和同号时,抛物线开口向左,方程表示焦点在轴的椭圆,无符合条件的选项;当和异号时,抛物线开口向右,方程表示双曲线,本题选择A选项.10、C【解题分析】解一元二次不等式求集合A,再由集合的交运算求即可.【题目详解】由题设,,∴.故选:C.11、A【解题分析】根据过定点的直线系求出恒过点可判断B,由点与圆的位置关系可判断A,由直线方程可判断CD.【题目详解】直线可化为,令,,解得,,所以直线恒过定点,而该定点在圆C:内部,所以必与该圆相交当时,直线方程为,故斜率为0,当时,直线方程为,故斜率为,倾斜角为135°.故选:A12、C【解题分析】利用简易逻辑的知识逐一判断即可.【题目详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】由共线向量得,解方程即可.【题目详解】因为,所以,解得.故答案为:214、2【解题分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【题目详解】解:设抛物线为y2=2px,如图:,又,解得,设圆的半径为,,解得:p=2,即C的焦点到准线的距离为:2.故答案为:2.15、【解题分析】先利用勾股定理得出满足条件的长度,再结合几何概型的概率公式得出答案.【题目详解】设,当时,,;当时,,所以当到的距离都大于时,的最大边是AB,所以的最大边是AB的概率为.故答案为:16、①.②.【解题分析】第一空,直接套入“黄金椭圆”新定义即可,第二空,从内切圆入手,找到等量关系,进而得到,求解即可【题目详解】由题,,所以如图,连接,设内切圆半径为,则,即,∴,∴,∴∴,∴故答案为:;【题目点拨】本题从新定义出发,第一空直接套用定义可得答案,第二空升华,需要在理解新定义的基础上,借助内切圆的相关公式求解,层层递进,是一道好题.关键点在于找到“”这一关系三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解题分析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【题目详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1);(2)存在,.【解题分析】(1)利用两点间的距离公式和直线与圆相切的性质即可得出;(2)假设存在点,满足题设条件,设直线的方程,根据韦达定理即可求出点的坐标【小问1详解】设动圆的圆心,依题意:化简得:,即为动圆的圆心的轨迹的方程【小问2详解】假设存在点,满足条件,使①,显然直线斜率不为0,所以由直线过点,可设,由得设,,,,则,由①式得,,即消去,,得,即,,,存在点使得19、(1)证明见解析;(2).【解题分析】(1)连接交于点,连接,要证明,只需证明平面即可;(2)以D为原点建系,分别求出平面与平面的法向量,再利用向量的夹角公式计算即可得到答案.【题目详解】(1)证明:如图,连接交于点,连接四边形为正方形,,且为的中点又四边形为菱形,平面平面又平面OAE.(2)解:如图,建立空间直角坐标系,不妨设,则,,则由(1)得又平面平面,平面平面,平面ABCD,故,同理,设为平面的法向量,为平面的法向量,则故可取,同理故可取,所以设平面与平面所成的二面角为,则,所以平面与平面所成的二面角的正弦值为20、(1);(2).【解题分析】(1)由题设条件,结合等差数列通项公式求基本量d,进而写出通项公式.(2)由(1)得,应用累加法、错位相减法及等比数列前n项和公式求的通项公式.【小问1详解】令公差为d,由得:,解得.所以.【小问2详解】,则,累加整理,得:,①,②②-①得:,又满足上式,故.21、(1);(2);(3)证明见解析.【解题分析】(1)根据已知求出即得椭圆的方程;(2)联立直线和椭圆的方程求出弦长和三角形的高即得解;(3)联立直线和椭圆的方程,得到韦达定理,再利用平面向量证明.【小问1详解】解:由题得,所以椭圆方程为,因为椭圆过点所以,所以所以椭圆的方程为.【小问2详解】解:由题得,所以直线的方程为即,联立直线和椭圆方程得,所以,点到直线的距离为.所以的面积为.【小问3详解】解:设直线的方程为,联立直线和椭圆的方程得,设,所以,由题得,,所以,所以,所以,又有公共点,所以三点共线.22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论