




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛胶州市2024学年高二数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数图象如图所示,则的解析式可以为A. B.C. D.2.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列3.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.4.圆:与圆:的位置关系是()A.内切 B.外切C.相交 D.相离5.变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24 B.25C.25.5 D.266.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.7.已知函数,则曲线在点处的切线方程为()A. B.C. D.8.已知点、是双曲线C:的左、右焦点,P是C左支上一点,若直线的斜率为2,且为直角三角形,则双曲线C的离心率为()A.2 B.C. D.9.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.10.是等差数列,,,的第()项A.98 B.99C.100 D.10111.已知命题:抛物线的焦点坐标为;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.12.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______14.在1和9之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.15.已知函数定义域为,值域为,则______16.数学家华罗庚说:“数缺形时少直观,形少数时难入微”,事实上,很多代数问题可以转化为几何问题加以解决.例如:与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点:对于函数,的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,点,点是圆上任意一点,线段的垂直平分线交直线于点,点的轨迹记为曲线.(1)求曲线的方程;(2)已知曲线上一点,动圆,且点在圆外,过点作圆的两条切线分别交曲线于点,.(i)求证:直线的斜率为定值;(ii)若直线与交于点,且时,求直线的方程.18.(12分)在平面直角坐标系xOy中,O为坐标原点,已知直线:mx-(2-m)y-4=0与直线h:x+y-2=0的交点M在第一三象限的角平分线上.(1)求实数m的值;(2)若点P在直线l上且,求点P的坐标.19.(12分)某餐馆将推出一种新品特色菜,为更精准确定最终售价,这种菜按以下单价各试吃1天,得到如下数据:(1)求销量关于的线性回归方程;(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每份特色菜的成本是15元,为了获得最大利润,该特色菜的单价应定为多少元?(附:,)20.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.21.(12分)设命题p:实数x满足x≤2,或x>6,命题q:实数x满足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且为真命题,求实数x的取值范围;(2)若q是的充分不必要条件,求实数a的取值范围.22.(10分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】利用排除法:对于B,令得,,即有两个零点,不符合题意;对于C,当时,,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项2、C【解题分析】根据文化知识,分别求出相对应的频率,即可判断出结果【题目详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【题目点拨】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题3、C【解题分析】根据双曲线的定义求得,利用可得离心率范围【题目详解】因为,又,所以,,又,即,,所以离心率故选:C4、A【解题分析】先计算两圆心之间的距离,判断距离和半径和、半径差之间的关系即可.【题目详解】圆圆心,半径,圆圆心,半径,两圆心之间的距离,故两圆内切.故选:A.5、A【解题分析】可设出缺少的数值,利用表中的数据,分别表示出、,将样本中心点带入回归方程,即可求得参数.【题目详解】设缺少的数值为,则,,因为回归直线方程经过样本点的中心,所以,解得.故选:A6、D【解题分析】利用几何概型的概率公式,转化为面积比直接求解.【题目详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D7、A【解题分析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【题目详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A8、B【解题分析】根据双曲线的定义和勾股定理利用即可得离心率.【题目详解】∵直线的斜率为2,为直角三角形,∴,又,∴,.∵,即,∴故选:B.9、B【解题分析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【题目详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【题目点拨】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).10、C【解题分析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【题目详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C11、D【解题分析】求出的焦点坐标,及等轴双曲线的离心率,判断出为假命题,q为真命题,进而判断出答案.【题目详解】抛物线的焦点坐标为,故命题为假命题;命题:等轴双曲线中,,所以离心率为,故命题q为真命题,所以为真命题,其他选项均为假命题.故选:D12、B【解题分析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【题目详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、4【解题分析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【题目详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:414、27【解题分析】设公比为,利用已知条件求出,然后根据通项公式可求得答案【题目详解】设公比为,插入的三个数分别为,因为,所以,得,所以,故答案为:2715、3【解题分析】根据定义域和值域,结合余弦函数的图像与性质即可求得的值,进而得解.【题目详解】因为,由余弦函数的图像与性质可得,则,由值域为可得,所以,故答案为:3.【题目点拨】本题考查了余弦函数图像与性质的简单应用,属于基础题.16、【解题分析】根据题意得,表示点与点与距离之和的最小值,再找对称点求解即可.【题目详解】函数,表示点与点与距离之和的最小值,则点在轴上,点关于轴的对称点,所以,所以的最小值为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(i)答案见解析(ii)或【解题分析】(1)通过几何关系可知,且,由此可知点的轨迹是以点、为焦点,且实轴长为的双曲线,通过双曲线的定义即可求解;(2)(i)设点,,直线的方程为,将直线方程与双曲线方程联立利用韦达定理及求出,即得到直线的斜率为定值;(ii)由(i)可知,由已知可得,联立方程即可求出,的值,代入即可求出的值,即可得到直线方程.【小问1详解】由题意可知,∵,且,∴根据双曲线的定义可知,点的轨迹是以点、为焦点,且实轴长为的双曲线,即,,,则点的轨迹方程为;【小问2详解】(i)设点,,直线的方程为,联立得,其中,且,,,∵曲线上一点,∴,由已知条件得直线和直线关于对称,则,即,整理得,,,,即,则或,当,直线方程为,此直线过定点,应舍去,故直线的斜率为定值.(ii)由(i)可知,由已知得,即,当时,,,即,,,解得或,但是当时,,故应舍去,当时,直线方程为,当时,,即,,,解得(舍去)或,当时,直线方程为,故直线的方程为或.18、(1)3(2)【解题分析】(1)求出直线与直线的交点坐标,代入直线的方程可得值;(2)设,代入已知等式可求得值,得坐标【小问1详解】由得,即所以,【小问2详解】由(1)直线方程是,在直线上,设,则,解得,所以点坐标为19、(1)(2)24【解题分析】(1)求出,的值,根据公式求出的值,代入公式即可求出回归直线方程(2)根据(1)的结论,求出利润,根据二次函数的性质,即可求解【题目详解】解:(1)由题意得,,,,得,,所以关于的线性回归方程为:.(2)由题意得,每份菜获得的利润,∴当时,取最大值,∴单价应定为24元,可获得最大利润.【题目点拨】本题考查回归直线的求法与应用,着重考查计算化简的能力,属基础题20、(1)证明见解析;(2);【解题分析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【题目详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.21、(1){x|2<x<4};(2).【解题分析】(1)分别求出命题和为真时对应的取值范围,即可求出;(2)由题可知,列出不等式组即可求解.【题目详解】解:(1)当a=2时,命题q:2<x<4,∵命题p:x≤2或x>6,,又为真命题,∴x满足,∴2<x<4,∴实数x的取值范围{x|2<x<4};(2)由题意得:命题q:a<x<2a;∵q是的充分不必要条件,,,解得,∴实数a的取值范围.【题目点拨】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含22、(1)证明见解析(2)【解题分析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预应力张拉方法
- 施工作业人员法律法规告知
- Brand KPIs for neobanking Banco Original in Brazil-英文培训课件2025.4
- Brand KPIs for hotels:Best Western in the United States-英文培训课件2025.5
- 双频共口径高隔离阵列天线设计
- 汽车传感器与检测技术电子教案:空气质量传感器
- 房地产企业计税成本的扣除变化分析
- 佛山新中源国际商务公寓营销策划报告41p
- 城乡医疗住院管理制度
- 中考地理复习教案第9课时 东南亚南亚西亚欧洲西部极地地区
- 人行道栏杆计算
- 小学心理健康教育-我会举手发言教学设计学情分析教材分析课后反思
- 东南大学高等数学实验报告-2
- 江苏省连云港市海州区2022-2023学年八年级下学期期末数学试题(含答案)
- 西师版小学数学-毕业总复习资料
- 气瓶内残液残气处理操作规程
- 关于英国物业收费的讨论
- 《陋室铭》之托物言志学习课件
- 汉明码编译码实验新编
- 电大可编程控制器应用实训 形考任务6
- 部编版《语文》三年级下册全册教案及反思
评论
0/150
提交评论