版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年苏州市重点中学高二数学第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120 B.84C.56 D.282.函数,的最小值为()A.2 B.3C. D.3.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为4.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.45.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件6.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.107.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.8.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势9.在棱长均为1的平行六面体中,,则()A. B.3C. D.610.已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.双曲线的渐近线方程和离心率分别是A. B.C. D.12.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对二、填空题:本题共4小题,每小题5分,共20分。13.已知B(,0)是圆A:内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为_________________.14.已知圆,则圆心坐标为______.15.已知函数在点处的切线为直线l,则l与坐标轴围成的三角形面积为___________.16.某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为___________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差不为的等差数列的首项,且、、成等比数列.(1)求数列的通项公式;(2)设,,是数列的前项和,求使成立的最大的正整数.18.(12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直,,,.(1)求点C到平面的距离;(2)线段上是否存在点F,使与平面所成角正弦值为,若存在,求出,若不存在,说明理由.19.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程21.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.22.(10分)已知函数(a为非零常数)(1)若f(x)在处的切线经过点(2,ln2),求实数a的值;(2)有两个极值点,.①求实数a的取值范围;②若,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】按照框图中程序,逐步执行循环,即可求得答案.【题目详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B2、B【解题分析】求导函数,分析单调性即可求解最小值【题目详解】由,得,当时,,单调递减;当时,,单调递增∴当时,取得最小值,且最小值为故选:B.3、D【解题分析】在正方体中,利用线面关系逐一判断即可.【题目详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【题目点拨】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力4、A【解题分析】求出椭圆的通径,即可得到结果【题目详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A5、A【解题分析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【题目详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【题目点拨】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.6、C【解题分析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【题目详解】由双曲线可得根据双曲线的定义可得:故选:C7、A【解题分析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【题目详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.8、D【解题分析】根据统计图判断各选项的对错.【题目详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.9、C【解题分析】设,,,利用结合数量积的运算即可得到答案.【题目详解】设,,,由已知,得,,,,所以,所以.故选:C10、B【解题分析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【题目详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.11、A【解题分析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【题目详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【题目点拨】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解12、C【解题分析】求得、、的值,由此可得出所求椭圆的方程.【题目详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】利用椭圆的定义可得轨迹方程.【题目详解】连接,由题意,,则,由椭圆的定义可得动点D的轨迹为椭圆,其焦点坐标为,长半轴长为2,故短半轴长为1,故轨迹方程为:.故答案为:.14、【解题分析】将圆的一般方程配方程标准方程即可.【题目详解】圆,即,它的圆心坐标是.故答案为:.15、【解题分析】先求出切线方程,分别得到直线与x、y轴交点,即可求出三角形的面积.【题目详解】由函数可得:函数,所以,.所以切线l:,即.令,得到;令,得到;所以l与坐标轴围成的三角形面积为.故答案为:.16、##0.8【解题分析】由排列组合知识求得所选3人中男女生都有方法数及总的选取方法数后可计算概率【题目详解】从6名男生和4名女生中选出3人的方法数是,所选3人中男女生都有的方法数为,所以概率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)设等差数列的公差为,根据已知条件可得出关于实数的等式,结合可求得的值,由此可得出数列的通项公式;(2)利用裂项求和法求出,解不等式即可得出结果.【小问1详解】解:设等差数列公差为,则,由题意可得,即,整理得,,解得,故.【小问2详解】解:,所以,,由得,可得,所以,满足成立的最大的正整数的值为.18、(1)(2)存在,1【解题分析】(1)由题意建立空间直角坐标系,求得平面向量的法向量和相应点的坐标,利用点面距离公式即可求得点面距离(2)假设满足题意的点存在且满足,由题意得到关于的方程,解方程即可确定满足题意的点是否存在【小问1详解】解:如图所示,取中点,连结,,因为三角形是等腰直角三角形,所以,因为面面,面面面,所以平面,又因为,所以四边形是矩形,可得,则,建立如图所示的空间直角坐标系,则:据此可得,设平面的一个法向量为,则,令可得,从而,又,故求点到平面的距离【小问2详解】解:假设存在点,,满足题意,点在线段上,则,即:,,,,,据此可得:,,从而,,,,设与平面所成角所成的角为,则,整理可得:,解得:或(舍去)据此可知,存在满足题意的点,点为的中点,即19、(1)(2)【解题分析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【题目详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆的方程联立可得:①设两点的坐标为,由韦达定理得:,∴点到直线的距离,∴由①知:,,令,则,∴令,则在上的最大值为∴的最大值为综上所述:三角形面积的最大值2.【题目点拨】本题考查了根据求椭圆的标准方程,考查了直线与椭圆额位置关系中三角形面积问题,考查了学生的计算能力,属于中档题.20、(1);(2)2x﹣y﹣6=0﹒【解题分析】(1)根据抛物线焦半径公式构造方程求得,从而得到结果(2)设直线,代入抛物线方程可得韦达定理的形式,根据可构造方程求得,从而得到直线方程【小问1详解】由抛物线定义可知:,解得:,抛物线的方程为:【小问2详解】由抛物线方程知:,设直线,,,,,联立方程,得:,,,以线段为直径的圆过点,,,解得:,直线的方程为:,即21、(1)(2)【解题分析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=22、(1)(2)①(0,1);②证明见解析【解题分析】小问1先求出切线方程,再将点(2,ln2),代入即可求出a的值;小问2的①通过求导,再结合函数的单调性求出a的取值范围;②结合已知条件,构造新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我想听高级股票课程设计
- 休养所养生保健服务品牌建设考核试卷
- 建筑物绿色建筑综合评价体系构建策略考核试卷
- 弯曲冲压课程设计
- 培养学生的逻辑思维和问题解决能力考核试卷
- 2024年煤矿绿色开采技术承包合同范本3篇
- 小鸡发育障碍课程设计
- 丝绸产品包装材料与工艺创新研究考核试卷
- 2024年涉外酒店出纳工作合同
- 外国小学课程设计
- 基于VMI的库存管理
- 建筑工程钢结构焊接变形的控制措施
- 小儿推拿调理脾胃(一)
- 零售业收银员操作培训
- 四年级美术 16. 印染“花布”【全国一等奖】
- 初中美术八年级上册服装设计(全国一等奖)
- 导医接待与患者情绪管理
- 化工行业基础知识培训课件
- 斜拉桥施工技术
- 《影视行业无形资产评估的案例分析-以华谊兄弟为例》12000字
- 新课标下小学美术课程设计
评论
0/150
提交评论