上海市戏剧学院附中2024年数学高二上期末质量跟踪监视模拟试题含解析_第1页
上海市戏剧学院附中2024年数学高二上期末质量跟踪监视模拟试题含解析_第2页
上海市戏剧学院附中2024年数学高二上期末质量跟踪监视模拟试题含解析_第3页
上海市戏剧学院附中2024年数学高二上期末质量跟踪监视模拟试题含解析_第4页
上海市戏剧学院附中2024年数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市戏剧学院附中2024年数学高二上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.2.设命题,,则为().A., B.,C., D.,3.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.4.已知,,则等于()A.2 B.C. D.5.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.6.若定义在R上的函数的图象如图所示,为函数的导函数,则不等式的解集为()A. B.C. D.7.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.8.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.9.已知角为第二象限角,,则的值为()A. B.C. D.10.曲线的离心率为()A. B.C. D.11.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm),那么该壶的容量约为()A.100 B.C.300 D.40012.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递减,则的取值范围是______.14.已知函数,则________15.记为等比数列的前n项和,若,公比,则______16.如果圆锥的底面圆半径为1,母线长为2,则该圆锥的侧面积为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积18.(12分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.19.(12分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.20.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;21.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.22.(10分)设函数.(1)求在处的切线方程;(2)求的极小值点和极大值点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【题目详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.2、B【解题分析】根据全称命题和特称命题互为否定,即可得到结果.【题目详解】因为命题,,所以为,.故选:B.3、C【解题分析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【题目详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.4、D【解题分析】利用两角和的正切公式计算出正确答案.【题目详解】.故选:D5、C【解题分析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【题目详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.6、A【解题分析】由函数单调性得出和的解,然后分类讨论解不等式可得【题目详解】由图象可知:在为正,在为负,,可化为:或,解得或故选:A7、C【解题分析】运用点差法即可求解【题目详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C8、C【解题分析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【题目详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C9、C【解题分析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【题目详解】∵,是第二象限角,∴,∴.故选:C.10、C【解题分析】由曲线方程直接求离心率即可.【题目详解】由题设,,,∴离心率.故选:C.11、B【解题分析】根据圆台的体积等于两个圆锥的体积之差,即可求出【题目详解】设大圆锥的高为,所以,解得故故选:B【题目点拨】本题主要考查圆台体积的求法以及数学在生活中的应用,属于基础题12、A【解题分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【题目详解】如图,从5个点中任取3个有共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先求导,求出函数的单调递减区间,由即可求解.【题目详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.14、.【解题分析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【题目详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.15、4【解题分析】根据给定条件列式求出数列的首项即可计算作答.【题目详解】依题意,,解得,所以.故答案为:416、2π【解题分析】由圆锥的侧面积公式即可求解【题目详解】由题意,圆锥底面周长为2π×1=2π,又母线长为2,所以圆锥的侧面积故答案为:2π.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题意得四边形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小问2详解】过点A作AE⊥BC于E,易知E为BC中点,以A为原点,AE,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,则,,,.则设,.显然,是平面ACD的一个法向量,设平面MAC的一个法向量为.则有,取,解得由二面角M﹣AC﹣D的余弦值为,有,解得,所以M为PD中点.所以18、(1)C:;D:;(2)①且;②见解析.【解题分析】(1)根据D的离心率为,求出从而求出双曲线的焦点,再由椭圆的焦点与双曲线的焦点相同,即可求出,即可求出C与D的方程;(2)①根据题意容易得出,然后联立方程,消元,利用即可求出m的取值范围;②设,由①得:,计算出,判断其是否为定值即可.【题目详解】解:(1)因为D的离心率为,即,解得:,所以D的方程为:;焦点坐标为,又因椭圆的焦点与双曲线的焦点相同,所以,所以,所以C的方程为:;(2)①如图:因为直线与C交于A,B两点,且直线PA,PB的斜率都存在,所以,联立,消化简得:,所以,解得,所以且;②设,由①得:,,所以,故直线PA,PB的斜率之积不是是定值.【题目点拨】本题考查了求椭圆与双曲线的方程、直线与椭圆的位置关系及椭圆中跟定直有关的问题,难度较大.19、(1)2(2)当时,没有极值;当时,极大值为,极小值为.【解题分析】(1)当时,,可得:.,,得或,列出函数单调性表格,即可最大值;(2),令,得或,分别讨论和,即可求得的极值.【题目详解】(1)当时,,所以.令,得或,列表如下:-2-11+0-0+极大值极小值由于,,所以函数在区间上的最大值为2.(2),令,得或.当时,,所以函数在上单调递增,无极值.当时,列表如下:+0-0+极大值极小值函数的极大值为,极小值为.【题目点拨】本题主要考查根据导数求函数单调性和极值,解题关键是掌握导数求单调性的方法和极值定义,考查分析能力和计算能力,属于中档题.20、(1)(2)详见解析【解题分析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【题目详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【题目点拨】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.21、(1)(2)【解题分析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论