人教版八年级数学下册《平行四边形》解答题 期末专题复习(含答案)_第1页
人教版八年级数学下册《平行四边形》解答题 期末专题复习(含答案)_第2页
人教版八年级数学下册《平行四边形》解答题 期末专题复习(含答案)_第3页
人教版八年级数学下册《平行四边形》解答题 期末专题复习(含答案)_第4页
人教版八年级数学下册《平行四边形》解答题 期末专题复习(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级数学下册《平行四边形》解答题期末专题复习1.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.2.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)试说明:AB=CF;(2)连接DE,若AD=2AB.试说明:DE⊥AF.3.如图,在△ABC中,AB=AC,延长BC至点D,使CD=BC,点E在边AC上,以CE,CD为邻边作▱CDFE,过点C作CG∥AB交EF于点G.连结BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.4.如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.5.在平行四边形ABCD中,已知E,F,G,H分别是AB,BC,CD,DA上的点,且BE=DG,∠BFE=∠DHG.求证:(1)△BEF≌△DGH;(2)四边形EFGH为平行四边形.6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.7.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.8.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.9.如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF;(2)求证:四边形EFGH是菱形.10.如图,在△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作与DE∥AB,DE与AC、AE分别交于点O、E,连接EC.(1)求证:AD=EC;(2)当△ABC满足时,四边形ADCE是菱形.11.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.12.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.13.如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.14.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=eq\f(1,2)BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.15.如图,已知▱ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)16.已知:在正方形ABCD中,点G是BC边上的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.求证:(1)△ADE≌△BAF;(2)AF=BF+EF.17.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.(1)求证:四边形BDCF是菱形;(2)当Rt△ABC中的边或角满足什么条件时?四边形BDCF是正方形,请说明理由.19.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.20.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.22.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的面积.23.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.24.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O,E,F分别在BD,BC,AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.25.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.26.下面图片是八年级教科书中的一道题:如图,四边形ABCD是正方形,点E是边BC的中点,AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.(提示:取AB的中点G,连接EG.)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图1,若点E是BC边上任意一点(不与B、C重合),其他条件不变.求证:AE=EF;(3)在(2)的条件下,连接AC,过点E作EP⊥AC,垂足为P.设BE=kBC,当k为何值时,四边形ECFP是平行四边形,并给予证明.

答案1.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠ECB.∵AF∥CE,∴∠AFB=∠ECB,∴∠AFB=∠1.在△ABF和△CDE中,∴△ABF≌△CDE(AAS);(2)解:由(1)得∠1=∠ECB.∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°-2×65°=50°.2.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.3.解:(1)∠ACB=∠GCD.理由如下:∵AB=AC,∴∠ABC=∠ACB.∵CG∥AB,∴∠ABC=∠GCD,∴∠ACB=∠GCD.(2)证明:∵四边形CDFE是平行四边形,∴EF∥CD,∴∠ACB=∠GEC,∠EGC=∠GCD.∵∠ACB=∠GCD,∴∠GEC=∠EGC,∴EC=GC.∵∠GCD=∠ACB,∴∠GCB=∠ECD.∵BC=DC,∴△BCG≌△DCE.4.证明:∵AF∥BC,∴∠AFE=∠EBD.在△AEF和△DEB中∵,∴△AEF≌△DEB(AAS).∴AF=BD.∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形.5.证明:(1)∵四边形ABCD是平行四边形,∴∠B=∠D.在△BEF和△DGH中,∵eq\b\lc\{(\a\vs4\al\co1(∠BFE=∠DHG,,∠B=∠D,,BE=DG,))∴△BEF≌△DGH(AAS);(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=DC,∠A=∠C.由(1)得△BEF≌△DGH,∴BF=DH,EF=GH.又∵BE=DG,∴AH=CF,AE=CG.在△AEH和△CGF中,∵eq\b\lc\{(\a\vs4\al\co1(AE=CG,,∠A=∠C,,AH=CF,))∴△AEH≌△CGF(SAS),∴EH=GF.又∵EF=GH,∴四边形EFGH是平行四边形.6.(1)证明:∵DE=OC,DE∥AC,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=4,∴在矩形OCED中,CE=OD=2eq\r(3),∴在△ACE中,AE=2eq\r(7).7.证明:(1)四边形ABCD是菱形,∴OA=OC=eq\f(1,2)AC,AD=CD,∵DE∥AC且DE=eq\f(1,2)AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=CD;(2)解:∵AC⊥BD,∴四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=eq\r(3).∴在Rt△ACE中,AE=eq\r(7).8.证明:(1)证明:∵△ABC绕A点旋转得到△ADE,∴AB=AD,AC=AE,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,∴∠EAC=∠DAB.又AB=AC,∴AE=AD,∴△AEC≌△ADB.(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,又由旋转知AB=AD,∴∠DBA=∠BDA=45°,∴△BAD是等腰直角三角形.∴BD2=AB2+AD2=22+22=8,∴BD=2eq\r(2).∵四边形ADFC是菱形,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2eq\r(2)﹣2.9.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH.∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四边形HEFG为平行四边形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴四边形EFGH是菱形.10.证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE∥BD,且AE=BD又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD=CD,又∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.故答案为∠BAC=90°.11.证明:(1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=eq\f(1,2)FB=3,AE=2AO,在Rt△AOB中,AO=4,∴AE=2AO=8.12.证明:(1)∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又∵BE∥AC,∴四边形ABEC是平行四边形.∴BE=AC.∴BD=BE.(2)∵四边形ABCD是矩形,∴AO=OC=BO=OD=4,即BD=8.∵∠DBC=30°,∴∠ABO=90°﹣30°=60°.∴△ABO是等边三角形,即AB=OB=4,于是AB=DC=CE=4.在Rt△DBC中,DC=4,BD=8,BC=4eq\r(3).∵AB∥DE,AD与BE不平行,∴四边形ABED的面积=eq\f(1,2)(AB+DE)·BC=eq\f(1,2)(4+4+4)·4eq\r(3)=24eq\r(3).13.(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.14.(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中∠BFD=∠CED∠BDF=∠CDE∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=eq\f(1,2)BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.15.证明:(1)∵四边形ABCD是平行四边形∴AB∥CD∴∠ABC+∠BCD=180°又∵BE,CF分别是∠ABC,∠BCD的平分线∴∠EBC+∠FCB=90°∴∠BOC=90°故BE⊥CF(2)解:AF=DE理由如下:∵AD∥BC∴∠AEB=∠CBE又∵BE是∠ABC的平分线,∴∠ABE=∠CBE∴∠AEB=∠ABE∴AB=AE同理CD=DF又∵四边形ABCD是平行四边形∴AB=CD∴AE=DF∴AF=DE(3)当△BOC为等腰直角三角形时四边形ABCD是矩形.16.解:(1)由正方形的性质可知:AD=AB,∵∠BAF+∠ABF=∠BAF+∠DAE=90°,∴∠ABF=∠DAE,在△ADE与△BAF中,∴△ADE≌△BAF(AAS)(2)由(1)可知:BF=AE,∴AF=AE+EF=BF+EF17.证明:∵四边形ABCD为正方形,∴AD=DC,∠ADC=∠C=90°,在Rt△ADF与Rt△DCE中,AF=DE,AD=CD,∴Rt△ADF≌Rt△DCE(HL)∴∠DAF=∠EDC设AF与ED交于点G,∴∠DGF=∠DAF+∠ADE=∠EDC+∠ADE=∠ADC=90°∴AF⊥DE.18.证明:(1)∵CF∥AB∴∠CFA=∠BAF,∠ADC=∠FCD,且CE=DE∴△CEF≌△DEA(AAS)∴CF=AD,∵CD是Rt△ABC的中线∴CD=AD=BD∴CF=BD,且CF∥AB∴四边形BDCF是平行四边形,且CD=BD∴四边形BDCF是菱形(2)当AC=BC时,四边形BDCF是正方形,理由如下:∵AC=BC,CD是中线∴CD⊥AB,且四边形BDCF是菱形∴四边形BDCF是正方形.19.(1)证明:在△ABC中,∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∵∠BAD=60°,∴∠BAD=∠ABC=60°,∴BC∥AD.∵E为AB的中点,∴CE=eq\f(1,2)AB,BE=eq\f(1,2)AB,∴CE=BE,∴∠BCE=∠EBC=60°,∴∠BEC=∠AEF,∴∠AFE=∠D=60°,∴FC∥BD,∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=eq\f(1,2)AB=3,AC=eq\r(3)BC=3eq\r(3),∴S平行四边形BCFD=3×3eq\r(3)=9eq\r(3).20.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.21.证明:(1)由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵∠FDE=90°,∴22+(6﹣x)2=x2,解得,x=eq\f(10,3),∴CE=eq\f(10,3),∴四边形CEFG的面积是:CE•DF=eq\f(10,3)×2=eq\f(20,3).22.证明:(1)∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC==5,△ACE的面积=eq\f(1,2)AE×EC=eq\f(1,2)×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=eq\f(1,2)AB•AC=eq\f(1,2)×12×5=30.23.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形,解:(2)∵四边形AFHG是正方形,∴∠BHC=90°,又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x,则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2,∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去),∴AD=12,∴AB=6eq\r(5).24.解:(1)证明:过点O作OM⊥AB于点M,∵BD是∠ABC的平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∵OM⊥AB,OF⊥AD,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)∵在Rt△ABC中,AC=5,BC=12,∴AB=eq\r(AC2+BC2)=eq\r(52+122)=13,设CE=CF=x,BE=BM=y,AM=AF=z,∴eq\b\lc\{(\a\vs4\al\co1(x+y=12,,y+z=13,,x+z=5,))解得eq\b\lc\{(\a\vs4\al\co1(x=2,,y=10,,z=3,))∴OE=CE=CF=2.25.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论