![2024届山东省恒台一中高二上数学期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/1a595f56d7d9c5e01692e251489683d9/1a595f56d7d9c5e01692e251489683d91.gif)
![2024届山东省恒台一中高二上数学期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/1a595f56d7d9c5e01692e251489683d9/1a595f56d7d9c5e01692e251489683d92.gif)
![2024届山东省恒台一中高二上数学期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/1a595f56d7d9c5e01692e251489683d9/1a595f56d7d9c5e01692e251489683d93.gif)
![2024届山东省恒台一中高二上数学期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/1a595f56d7d9c5e01692e251489683d9/1a595f56d7d9c5e01692e251489683d94.gif)
![2024届山东省恒台一中高二上数学期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/1a595f56d7d9c5e01692e251489683d9/1a595f56d7d9c5e01692e251489683d95.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省恒台一中高二上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.2.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.53.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.4.在下列函数中,最小值为2的是()A. B.C. D.5.抛物线的焦点到准线的距离为()A. B.C. D.6.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④7.椭圆的焦点坐标为()A. B.C. D.8.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.9.在平面直角坐标系中,已知的顶点,,其内切圆圆心在直线上,则顶点C的轨迹方程为()A. B.C. D.10.双曲线的焦点坐标是()A. B.C. D.11.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知直线,,若,则实数()A. B.C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的体对角线长为___________.14.某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为___________.(用数字作答)15.设双曲线的焦点为,点为上一点,,则为_____.16.如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由18.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.19.(12分)已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和20.(12分)在直角坐标系中,直线的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程,曲线C的直角坐标方程;(2)设直线与曲线C相交于A,B两点,点,求的值.21.(12分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值22.(10分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【题目详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A2、C【解题分析】先求出B(3,4,0),由此能求出||【题目详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C3、C【解题分析】运用点差法即可求解【题目详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C4、C【解题分析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C5、B【解题分析】根据抛物线的几何性质可得选项.【题目详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.6、B【解题分析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【题目详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B7、B【解题分析】根据方程可得,且焦点轴上,然后可得答案.【题目详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B8、C【解题分析】根据题意,设抛物线的方程为,进而待定系数求解即可.【题目详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C9、A【解题分析】根据图可得:为定值,利用根据双曲线定义,所求轨迹是以、为焦点,实轴长为6的双曲线的右支,从而写出其方程即得【题目详解】解:如图设与圆切点分别为、、,则有,,,所以根据双曲线定义,所求轨迹是以、为焦点,实轴长为4的双曲线的右支(右顶点除外),即、,又,所以,所以方程为故选:A10、B【解题分析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【题目详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.11、C【解题分析】先根据直线平行的充要条件求出a,然后可得.【题目详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C12、D【解题分析】根据两条直线的斜率相等可得结果.【题目详解】因为直线,,且,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】先根据棱锥的体积求出正方体的棱长,进而求出正方体的体对角线长.【题目详解】如图,连接,设正方体棱长为,则.所以,体对角线.故答案为:.14、##0.8【解题分析】由排列组合知识求得所选3人中男女生都有方法数及总的选取方法数后可计算概率【题目详解】从6名男生和4名女生中选出3人的方法数是,所选3人中男女生都有的方法数为,所以概率为故答案为:15、【解题分析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【题目详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.16、【解题分析】以为坐标原点建立空间直角坐标系,设出点的坐标,求得△的内心坐标,根据△内心以及关于的对称点三点共线,即可求得点的坐标,则问题得解.【题目详解】根据题意,以为坐标原点,建立平面直角坐标系,设点关于直线的对称点为,关于轴的对称点为,如下所示:则,不妨设,则直线的方程为,设点坐标为,则,且,整理得,解得,即点,又;设△的内切圆圆心为,则由等面积法可得,解得;故其内心坐标为,由及△的内心三点共线,即,整理得,解得(舍)或,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,理由见解析.【解题分析】(1)利用离心率,短轴长求出a,b,即可求得椭圆方程.(2)联立直线与椭圆方程,利用韦达定理计算判定,由M为线段AB中点即可确定存在常数推理作答.【小问1详解】因椭圆的短轴长是2,则,而离心率,解得,所以椭圆方程为.【小问2详解】存在常数,使恒成立,
由消去y并整理得:,设,,则,,又,,,则有,而线段AB的中点为M,于是得,并且有所以存在常数,使恒成立.18、(1)证明见解析,;(2).【解题分析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公式;(2)由(1)可得,又,所以,所以,利用错位相减法即可求解数列的前项和.【小问1详解】证明:由题意,因为,,,所以,,所以数列是以2为首项,3为公比的等比数列,所以;【小问2详解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.19、(1),;(2).【解题分析】(1)根据题意,结合等差数列的通项公式与求和公式,即可求解;(2)根据题意,求出,结合等差数列求和公式,即可求解.【小问1详解】根据题意,易知;.【小问2详解】根据题意,易知,因为,所以数列是首项为2,公差为的等差数列,故20、(1)直线的普通方程为;曲线C的直角坐标方程为(2)【解题分析】(1)根据转换关系将参数方程和极坐标方程转化为直角坐标方程即可;(2)将直线的参数方程化为标准形式,代入曲线C的直角坐标方程,设点A,B对应的参数分别为,利用韦达定理即可得出答案.【小问1详解】解:将直线的参数方程中的参数消去得,则直线的普通方程为,由曲线C的极坐标方程为,得,即,由得曲线C的直角坐标方程为;【小问2详解】解:点满足,故点在直线上,将直线的参数方程化为标准形式(为参数),代入曲线C的直角坐标方程为,得,设点A,B对应的参数分别为,则,所以.21、(1)(2)40【解题分析】(1)根据递推关系,判定数列是等差数列,然后求得首项和公差,进而得到通项公式;(2)令,求得,进而根据数列的前项和的意义求得当或5时,有最大值,进而求得和的最大值.【小问1详解】解:∵数列满足,∴,∴是等差数列,设的公差为d,则,即,解得,∴,∴【小问2详解】令,得,解得,所以当或5时,有最大值,且最大值为22、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解题分析】(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学低年级听评课记录
- 【人教版】八年级地理上册第一章第二节《人口》听课评课记录及优化训练答案
- 苏州苏教版六年级数学上册第三单元《分数应用题(1)》听评课记录
- 听评课记录六年级语文
- 新版华东师大版八年级数学下册《16.2.2分式的加减分式的加减-同分母分式加减》听评课记录16
- 小学二年级数学100道口算题
- 苏科版七年级数学上册《2.2有理数与无理数》听评课记录
- 北师大版道德与法治七年级下册1.2《理解情绪》听课评课记录
- 八年级历史人教版下册听课评课记录:第9课 对外开放
- 校企共建培训中心合作协议书范本
- 2024届新高考语文高中古诗文必背72篇 【原文+注音+翻译】
- 2024电力建设工程质量问题通病防止手册
- 大学生就业指导教学-大学生就业形势与政策
- 第五讲铸牢中华民族共同体意识-2024年形势与政策
- 中华人民共和国学前教育法
- 2024年贵州公务员考试申论试题(B卷)
- 三年级(下册)西师版数学全册重点知识点
- 期末练习卷(试题)-2024-2025学年四年级上册数学沪教版
- 2025年公务员考试申论试题与参考答案
- 抑郁症课件教学课件
- 关于消防安全评估设备操作说明详解
评论
0/150
提交评论