【必考题】高一数学下期末模拟试题含答案_第1页
【必考题】高一数学下期末模拟试题含答案_第2页
【必考题】高一数学下期末模拟试题含答案_第3页
【必考题】高一数学下期末模拟试题含答案_第4页
【必考题】高一数学下期末模拟试题含答案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【必考题】高一数学下期末模拟试题含答案一、选择题1.执行右面的程序框图,若输入的分别为1,2,3,则输出的()A. B. C. D.2.已知向量,,若与的夹角为,则()A.2 B. C. D.13.设,为两条不同的直线,,为两个不同的平面,则()A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=loga|x|有六个不同的根,则a的范围为()A. B. C. D.(2,4)5.已知集合,则A.B.C.D.6.已知,则下列不等式不成立的是A. B. C. D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.20 B.10 C.30 D.608.设正项等差数列的前n项和为,若,则的最小值为A.1 B. C. D.9.已知,若存在三个不同实数,,使得,则的取值范围是()A.(0,1) B.[-2,0) C. D.(0,1)10.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A. B. C. D.11.已知函数在上单调递增,则实数的取值范围是A. B. C. D.12.的零点所在的区间是()A. B. C. D.二、填空题13.已知两个正数满足,则使不等式恒成立的实数的范围是__________14.已知三棱锥的所有顶点都在球O的球面上,SC是球O的直径若平面平面SCB,,,三棱锥的体积为9,则球O的表面积为______.15.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于________.16.设向量,若向量与向量共线,则17.已知点是的重心,内角、、所对的边长分别为、、,且,则角的大小是__________.18.函数()的图像与其对称轴在轴右侧的交点从左到右依次记为,,,,,,在点列中存在三个不同的点、、,使得△是等腰直角三角形,将满足上述条件的值从小到大组成的数记为,则________.19.函数f(x)为奇函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.20.某三棱锥的三视图如下图所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是.三、解答题21.如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.(1)设圆N与y轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点且,求直线l的方程.22.已知满足(1)求的取值范围;(2)求函数的值域.23.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号12345储蓄存款(千亿元)567810(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中24.已知矩形ABCD的两条对角线相交于点,AB边所在直线的方程为,点在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程.25.如图,在四棱锥中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.(Ⅰ)求证:CD⊥PD;(Ⅱ)求证:BD⊥平面PAB;(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.26.已知中,内角所对边分别为,若.(1)求角的大小;(2)若,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】试题分析:根据题意由成立,则循环,即;又由成立,则循环,即;又由成立,则循环,即;又由不成立,则出循环,输出.考点:算法的循环结构2.B解析:B【解析】【分析】先计算与的模,再根据向量数量积的性质即可计算求值.【详解】因为,,所以,.又,所以,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.3.C解析:C【解析】【分析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断.【详解】对于A选项,若,,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,,,根据直线与平面平行的判定定理知,,,但与不平行;对于C选项,若,,在平面内可找到两条相交直线、使得,,于是可得出,,根据直线与平面垂直的判定定理可得;对于D选项,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直.故选C.【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.4.A解析:A【解析】由得:,当时,函数的图象如图:,再由关于的方程有六个不同的根,则关于的方程有三个不同的根,可得,解得,故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出的周期是4,画出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于的不等式,解得即可.5.D解析:D【解析】试题分析:由得,所以,因为,所以,故选D.【考点】一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.B解析:B【解析】【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项.【详解】依题意,由于为定义域上的减函数,故,故A选项不等式成立.由于为定义域上的增函数,故,则,所以B选项不等式不成立,D选项不等式成立.由于,故,所以C选项不等式成立.综上所述,本小题选B.【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.7.B解析:B【解析】【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果.【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:;底面面积:三棱锥体积:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.8.D解析:D【解析】【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。9.C解析:C【解析】【分析】画出函数图像,根据图像得到,,得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,故.故选:.【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.A解析:A【解析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.11.C解析:C【解析】x⩽1时,f(x)=−(x−1)2+1⩽1,x>1时,在(1,+∞)恒成立,故a⩽x2在(1,+∞)恒成立,故a⩽1,而1+a+1⩾1,即a⩾−1,综上,a∈[−1,1],本题选择C选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f(x1)-f(x2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.12.B解析:B【解析】函数f(x)=ex﹣是(0,+∞)上的增函数,再根据f()=﹣2<0,f(1)=e﹣1>0,可得f()f(1)<0,∴函数f(x)=ex﹣的零点所在的区间是(,1),故选B.点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.二、填空题13.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m的范围【详解】由题意知两个正数xy满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查解析:【解析】【分析】由题意将代入进行恒等变形和拆项后,再利用基本不等式求出它的最小值,根据不等式恒成立求出m的范围.【详解】由题意知两个正数x,y满足,则,当时取等号;的最小值是,不等式恒成立,.故答案为.【点睛】本题考查了利用基本不等式求最值和恒成立问题,利用条件进行整体代换和合理拆项再用基本不等式求最值,注意一正二定三相等的验证.14.36π【解析】三棱锥S−ABC的所有顶点都在球O的球面上SC是球O的直径若平面SCA⊥平面SCBSA=ACSB=BC三棱锥S−ABC的体积为9可知三角形SBC与三角形SAC都是等腰直角三角形设球的半解析:36π【解析】三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15.9【解析】【分析】由一元二次方程根与系数的关系得到a+b=pab=q再由ab﹣2这三个数可适当排序后成等差数列也可适当排序后成等比数列列关于ab的方程组求得ab后得答案【详解】由题意可得:a+b=p解析:9【解析】【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【详解】由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故答案为9.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a,b均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p,q.16.2【解析】【分析】由题意首先求得向量然后结合向量平行的充分必要条件可得的值【详解】=由向量共线的充分必要条件有:故答案为2【点睛】本题主要考查平面向量的坐标运算向量平行的充分必要条件等知识意在考查学解析:2【解析】【分析】由题意首先求得向量,然后结合向量平行的充分必要条件可得的值.【详解】=,由向量共线的充分必要条件有:.故答案为2.【点睛】本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.17.【解析】由向量的平行四边形法则可得代入可得故则由余弦定理可得故应填答案点睛:解答的关键是如何利用题设中所提供的向量等式中的边的关系探求处来这是解答本题的难点也是解答本题的突破口求解时充分利用已知条件解析:【解析】由向量的平行四边形法则可得,代入可得,故,则.由余弦定理可得,故,应填答案.点睛:解答的关键是如何利用题设中所提供的向量等式中的边的关系探求处来,这是解答本题的难点,也是解答本题的突破口.求解时充分利用已知条件及向量的平行四边形法则,将其转化为,然后再借助向量相等的条件待定出三角形三边之间的关系,最后运用余弦定理求出,使得问题获解.18.【解析】【分析】由可求得的横坐标进而得到的坐标;由正弦函数周期特点可知只需分析以为顶点的三角形为等腰直角三角形即可由垂直关系可得平面向量数量积为零进而求得的通项公式代入即可得到结果【详解】由得:……解析:【解析】【分析】由可求得的横坐标,进而得到的坐标;由正弦函数周期特点可知只需分析以,,为顶点的三角形为等腰直角三角形即可,由垂直关系可得平面向量数量积为零,进而求得的通项公式,代入即可得到结果.【详解】由,得:,,,,,……若为等腰直角三角形,则解得:,即同理若为等腰直角三角形,则同理若为等腰直角三角形,则以此类推,可得:故答案为:【点睛】本题考查正弦型函数图象与性质的综合应用问题,关键是能够根据正弦函数周期性的特点确定所分析成等腰直角三角形的三个顶点的位置,进而由垂直关系得到平面向量数量积为零,构造方程求得结果.19.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填解析:【解析】当x<0时,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.20.【解析】试题分析:该三棱锥底面是边长为2的正三角形面积为有两个侧面是底边为2高为2的直角三角形面积为2另一个侧面是底边为2腰为的等腰三角形面积为所以面积最大的面的面积是考点:三视图解析:【解析】试题分析:该三棱锥底面是边长为2的正三角形,面积为,有两个侧面是底边为2,高为2的直角三角形,面积为2,另一个侧面是底边为2,腰为的等腰三角形,面积为,所以面积最大的面的面积是.考点:三视图.三、解答题21.(1)(2)或.【解析】【分析】(1)根据由圆心在直线y=6上,可设,再由圆N与y轴相切,与圆M外切得到圆N的半径为和得解.(2)由直线l平行于OA,求得直线l的斜率,设出直线l的方程,求得圆心M到直线l的距离,再根据垂径定理确定等量关系,求直线方程.【详解】(1)圆M的标准方程为,所以圆心M(7,6),半径为5,.由圆N圆心在直线y=6上,可设因为圆N与y轴相切,与圆M外切所以,圆N的半径为从而解得.所以圆N的标准方程为.(2)因为直线l平行于OA,所以直线l的斜率为.设直线l的方程为,即则圆心M到直线l的距离因为而所以解得或.故直线l的方程为或.【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题.22.(1)(2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域.试题解析:解:(1)因为由于指数函数在上单调递增(2)由(1)得令,则,其中因为函数开口向上,且对称轴为函数在上单调递增的最大值为,最小值为函数的值域为.23.(Ⅰ),(Ⅱ)千亿元.【解析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.试题解析:(1)列表计算如下i11515226412337921448163255102550153655120这里又从而.故所求回归方程为.(2)将代入回归方程可预测该地区2015年的人民币储蓄存款为考点:线性回归方程.24.(1)3x+y+2=0;(2)(x-2)2+y2=8.【解析】【分析】(1)直线AB斜率确定,由垂直关系可求得直线AD斜率,又T在AD上,利用点斜式求直线AD方程;(2)由AD和AB的直线方程求得A点坐标,以M为圆心,以AM为半径的圆的方程即为所求.【详解】(1)∵AB所在直线的方程为x-3y-6=0,且AD与AB垂直,∴直线AD的斜率为-3.又∵点T(-1,1)在直线AD上,∴AD边所在直线的方程为y-1=-3(x+1),即3x+y+2=0.(2)由,得,∴点A的坐标为(0,-2),∵矩形ABCD两条对角线的交点为M(2,0),∴M为矩形ABCD外接圆的圆心,又|AM|=.∴矩形ABCD外接圆的方程为(x-2)2+y2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.25.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论