版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市何家堡乡中学2021-2022学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知F为双曲线C:的左焦点,P,Q为C右支上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PFQ的周长为()A.28 B.36 C.44 D.48参考答案:C【考点】双曲线的简单性质.【分析】根据题意画出双曲线图象,然后根据双曲线的定义“到两定点的距离之差为定值2a“解决.求出周长即可.【解答】解:∵双曲线C:的左焦点F(﹣5,0),∴点A(5,0)是双曲线的右焦点,则b=4,即虚轴长为2b=8;双曲线图象如图:∵|PF|﹣|AP|=2a=6
①|QF|﹣|QA|=2a=6
②而|PQ|=16,∴①+②得:|PF|+|QF|﹣|PQ|=12,∴周长为l=|PF|+|QF|+|PQ|=12+2|PQ|=44,故选:C.2.如图5,锐角三角形ABC中,以BC为直径的半圆分别交AB、AC于点D、E,则△ADE与△ABC的面积之比为(
)A.cosA
B.sinA
C.sin2A
D.cos2A参考答案:D略3.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于(
)A.2
B.18
C.2或18
D.16参考答案:C略4.且,则
(
)A
有最大值4
B
有最小值
C
有最大值
D
有最小值参考答案:C略5.若复数,则z2=(
)
A.
B.
C.
D.参考答案:B略6.如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是(
)(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)A.,且直线BE到面PAD的距离为B.,且直线BE到面PAD的距离为C.,且直线BE与面PAD所成的角大于D.,且直线BE与面PAD所成的角小于
参考答案:D略7.若函数f(x)=ax3-x2+x-5在(-∞,+∞)上单调递增,则a的取值范围是()A.a>
B.a≥
C.a<
D.a≤参考答案:B8.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图和俯视图中,这条棱的投影分别是长为和的线段,则的最大值为(
)A、
B、
C、
D、参考答案:D略9.一个家庭中有两个小孩,假定生男、生女是等可能的。已知这个家庭有一个是女孩,则此时另一个小孩是男孩得概率为
A.
B.
C.
D.参考答案:A10.“x>3”是“x2>9”的()A.充分不必要条件 B.必要不充分条件C.既充分又必要条件 D.既不充分又不必要条件参考答案:A【考点】充要条件.【分析】结合不等式的解法,利用充分条件和必要条件的定义进行判断.【解答】解:解不等式x2>9得x>3或x<﹣3,则x>3?x2>9,而x2>9推不出x>3.故“x>3”是“x2>9”的充分不必要条件.故选A.二、填空题:本大题共7小题,每小题4分,共28分11.下列命题: ①在一个2×2列联表中,由计算得k2=6.679,则有99%的把握确认这两个变量间有关系. ②随机变量X服从正态分布N(1,2),则P(X<0)=P(x>2); ③若二项式的展开式中所有项的系数之和为243,则展开式中x﹣4的系数是40 ④连掷两次骰子得到的点数分别为m,n,记向量=(m,n)与向量=(1,﹣1)的夹角为θ,则θ∈(0,]的概率是. ⑤若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31; 其中正确命题的序号为. 参考答案:①②④⑤【考点】命题的真假判断与应用. 【专题】对应思想;综合法;简易逻辑. 【分析】①利用独立性检查的性质进行判断. ②利用正态分布的对称性进行判断. ③根据二项式定理的内容进行判断. ④利用古典概型的概率公式进行判断. ⑤利用赋值法结合二项式定理进行判断. 【解答】解:①在一个2×2列联表中,由计算得K2=6.679>6.535,∴有99%的把握确认这两个变量间有关系,正确, ②随机变量X服从正态分布N(1,2),则图象关于x=1对称,则P(X<0)=P(x>2);正确, ③若二项式的展开式中所有项的系数之和为243, 则令x=1,得到(1+2)n=243,即3n=243,解得n=5, ∴展开式的通项为Tr+1=, 令5﹣3r=﹣4,解得r=3, ∴x﹣4的系数为23C=80.则展开式中x﹣4的系数是80,故③错误, ④试验发生包含的所有事件数6×6=36个, ∵m>0,n>0, ∴=(m,n)与=(1,﹣1)不可能同向. ∴夹角θ≠0. ∵θ∈(0,],≥0,∴m﹣n≥0, 即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1; 当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1. ∴满足条件的事件数6+5+4+3+2+1=21个 ∴概率P==. 则θ∈(0,]的概率是.故③正确, ⑤若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,令x=0,得a0=﹣25=﹣32, 令x=1得(1﹣2)5=a5+a4+a3+a2+a1+a0=﹣1,则a1+a2+a3+a4+a5=32﹣1=31;故⑤正确, 故答案为:①②④⑤ 【点评】本题主要考查命题的真假判断,涉及二项式定理,独立性检验以及古典概型的概率计算,正态分布,综合性较强,内容较多. 12.下列四个命题中,真命题的序号有
.(写出所有真命题的序号)①若,则“”是“”成立的充分不必要条件;②命题“使得”的否定是“均有”;③命题“若,则或”的否命题是“若,则”;④函数在区间上有且仅有一个零点.参考答案:①②③④13.设是双曲线的左,右两个焦点,若双曲线右支上存在一点P,使(O为坐标原点),且,则双曲线的离心率是
.参考答案:略14.曲线在处的切线方程为_▲_.参考答案:15.已知点在不等式组表示的平面区域上运动,则的最大值为
.参考答案:216.过抛物线的焦点,且垂直于对称轴的直线交抛物线于两点,若线段的长为8,则的值为
参考答案:4略17.在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知双曲线方程为16x2﹣9y2=144.(1)求该双曲线的实轴长、虚轴长、离心率;(2)若抛物线C的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C的方程.参考答案:【考点】双曲线的简单性质.【分析】(1)将双曲线方程化为标准方程,求出a,b,c,即可得到所求实轴长、虚轴长、离心率;(2)求出双曲线的中心坐标和左顶点坐标,设抛物线C的方程为y2=﹣2px(p>0),由焦点坐标,可得p的方程,解方程即可得到所求.【解答】解:(1)双曲线方程为16x2﹣9y2=144,即为﹣=1,可得a=3,b=4,c==5,则双曲线的实轴长为2a=6、虚轴长2b=8、离心率e==;(2)抛物线C的顶点是该双曲线的中心(0,0),而焦点是其左顶点(﹣3,0),设抛物线C的方程为y2=﹣2px(p>0),由﹣=﹣3,解得p=6.则抛物线C的方程为y2=﹣12x.19.已知椭圆,为右焦点,圆,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP的两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.参考答案:(Ⅰ)在椭圆:中,,,所以,故椭圆的焦距为,离心率.(Ⅱ)设(,),则,故. 所以,所以,.又,,故.因此.由,得,即,所以,当且仅当,即,时等号成立.20.已知数列{an}的前n项和为Sn,且(n∈N+).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log4(1﹣Sn+1)(n∈N+),,求使成立的最小的正整数n的值.参考答案:【考点】数列的求和;数列递推式.【分析】(Ⅰ)当n=1时,a1=S1,当n≥2时,an=Sn﹣Sn﹣1,结合等比数列的定义和通项公式计算即可得到所求;(Ⅱ)运用等比数列的求和公式和对数的运算性质,可得bn,再由裂项相消求和方法,求得Tn,解不等式即可得到所求最小值.【解答】解:(Ⅰ)当n=1时,a1=S1,S1+a1=1,解得a1=,当n≥2时,an=Sn﹣Sn﹣1=1﹣an﹣(1﹣an﹣1),即为an=an﹣1,由a1+a2+a2=1,可得a2=,则an=a2?()n﹣2=?()n﹣2=3?()n,对n=1也成立,可得数列{an}的通项公式为an=3?()n;(Ⅱ)bn=log4(1﹣Sn+1)=log4[1﹣]=log4=﹣(n+1),=++…+=﹣+﹣+…+﹣=﹣,成立,即为﹣≥,解得n≥2016,则使成立的最小的正整数n的值为2016.21.如图:点P为矩形ABCD所在平面外一点,且PA平面ABCD。(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗合同管理规范制度
- 第一单元+任务二《诗歌朗诵》课件-2024-2025学年统编版语文九年级上册
- 石河子大学《影像诊断学》2021-2022学年第一学期期末试卷
- 防三无食品安全
- 石河子大学《包装容器与纸盒结构》2023-2024学年第一学期期末试卷
- 沈阳理工大学《数据库系统原理》2022-2023学年期末试卷
- 沈阳理工大学《科技文献检索与写作》2022-2023学年第一学期期末试卷
- 沈阳理工大学《产品形导思维设计》2022-2023学年第一学期期末试卷
- 规范人事档案和劳动合同
- 合股开店协议合同书模板
- 完整2024年国有企业管理人员处分条例专题课件
- cad边界转换为xyz文件的一种方法
- CRISPR基因编辑技术教程PPT课件
- 《大学》导读解析
- 会计师事务所审计工作底稿之银行询证函模版
- 人体工程学在环境设计中的重要作用
- 2022年胸腔镜辅助下二尖瓣置换、三尖瓣成形术的护理配合
- 六上数学《圆》练习题(超全)
- visa拒付争议处理
- 马铃薯去皮机的设计说明书
- 跨越大广高速公路施工方案讲解
评论
0/150
提交评论