版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年辽宁省辽阳市第六高级中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设F1、F2分别为双曲线的左、右焦点,双曲线上存在一点P使得,,则该双曲线的离心率为(
)A. B. C. D.3参考答案:B【分析】由,结合,可得的关系式,再由可求离心率.【详解】由双曲线的定义得.由,结合已知条件可得,则,所以.所以双曲线的离心率.故选B.【点睛】本题考查双曲线的定义和离心率的求解.在椭圆和双曲线的问题中,经常应用(为曲线上的点到两焦点的距离)进行变换,有时还可以与根与系数的关系、余弦定理等结合.由于关系式(双曲线)和(椭圆)的存在,求离心率时,往往只需求得中任意两个字母之间的关系即可.2.设点在内部,且有,则的面积比为(
)A.1:2:3
B.3:2:1
C.2:3:4 D.4:3:2参考答案:B略3.若,,,则3个数,,的值(
)A.至多有一个不大于1 B.至少有一个不大于1C.都大于1 D.都小于1参考答案:B【分析】利用反证法,假设的值都大于1,则,这与=矛盾,据此即可得到符合题意的选项.【详解】假设的值都大于1,则,这与==矛盾,∴假设不成立,即的值至少有一个不大于1.本题选择B选项.【点睛】应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.4.若一个圆锥的轴截面是正三角形,则此圆锥侧面展开图扇形的圆心角大小为().A.60° B.90° C.120° D.180°参考答案:D解:设圆锥的底面半径为,母线长为,由该圆锥的轴截面是正三角形,得,∴,解得.故选.5.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为() A. B. C. D.参考答案:A【考点】异面直线及其所成的角. 【专题】计算题. 【分析】设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可. 【解答】解:设长方体的高为1,连接B1A、B1C、AC ∵B1C和C1D与底面所成的角分别为600和450, ∴∠B1CB=60°,∠C1DC=45° ∴C1D=,B1C=,BC=,CD=1则AC= ∵C1D∥B1A ∴∠AB1C为异面直线B1C和DC1所成角 由余弦定理可得cos∠AB1C= 故选A 【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题. 6.设是两个不同的平面,是一条直线,以下命题正确的是
(
)A、若,则
B、若,则
C、若,则
D、若,则
参考答案:C略7.已知圆C:的圆心为抛物线的焦点,直线3x+4y+2=0与圆C相切,则该圆的方程为(
)A.
B.
C.
D.参考答案:【知识点】抛物线的性质;圆的标准方程.【答案解析】C解析:解:由题意可得抛物线y2=4x的焦点为,故所求圆C的圆心C的坐标为,∴圆C的半径,∴圆C的方程为:.故选:C.【思路点拨】由题意可得抛物线的焦点坐标,可得圆心,再由点到直线的距离公式可得圆C的半径,可得其标准方程.8.《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为A. B. C. D.参考答案:A分析:由题意结合古典概型计算公式即可求得最终结果详解:记田忌的上等马、中等马、下等马分别为a,b,c,齐王的上等马、中等马、下等马分别为A,B,C,由题意可知,可能的比赛为:Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,共有9种,其中田忌可以获胜的事件为:Ba,Ca,Cb,共有3种,则田忌马获胜的概率为.本题选择A选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.9.已知等比数列满足,则(
)A.64
B.81
C.128
D.243参考答案:A10.以等腰直角三角形ABC斜边AB的中线CD为棱,将△ABC折叠,使平面ACD⊥平面BCD,则AC与BC的夹角为()A.30° B.60° C.90° D.不确定参考答案:B【考点】异面直线及其所成的角.【分析】先判断折叠后△ACD,△BCD,△ABD的形状,进而判断出△ABC的形状,从而可得答案.【解答】解:如图所示:折叠后∠ACD=∠BCD=45°,AD⊥CD,BD⊥CD,则∠ADB为二面角A﹣CD﹣B的平面角,又平面ACD⊥平面BCD,所以∠ADB=90°,所以△ADB为等腰直角三角形,设AD=1,则AC=BC=AB=,所以△ABC为正三角形,所以∠ACB=60°.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.二项式(1+x)6的展开式的中间项系数为.参考答案:20【考点】DB:二项式系数的性质.【分析】利用二项式定理得到中间项是第4项,利用二项展开式的通项公式求出第4项的系数.【解答】解:利用二项式定理知展开式共7项,所以中间项是第4项,故二项式(1+x)6的展开式的中间项系数为C63=20,故答案为:20.12.若直线y=ax-2与y=(a+2)x+1相互垂直,则a=
.
参考答案:-113.已知△ABC中,角A,B,C所对边分别是a,b,c,,且△ABC的周长为15,则c=________;若△ABC的面积等于,则cosC=________.参考答案:5
【分析】先由正弦定理,得到;求出;再由题意得到,根据余弦定理,即可求出结果.【详解】由得,又△ABC的周长为,即,所以;若△ABC的面积等于,则,所以,由余弦定理可得.故答案为5,【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于常考题型.14.若,且为实数,则实数的值为
.参考答案:略15.已知数列{}的前n项和为,则其通项公式=
▲参考答案:16.若双曲线的右焦点在抛物线的准线上,则实数的值为___▲.参考答案:417.若不等式对恒成立,则实数的取值范围是__________.111]参考答案:解:,当,即时取等号;的最小值为;,故本题正确答案是
.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)已知函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,若在区间上的最小值为,其中是自然对数的底数,求实数的取值范围;参考答案:令得
…………5分1
当,所以在上的最小值是,满足条件,于是;19.已知函数,.(1)若在处取得极值,求的极大值;(2)若在区间上的图像在图像的上方(没有公共点),求实数的取值范围.参考答案:解:(1),,由
………(2分)从而在
………(4分)极大值
………(5分)(2)由题意知在区间上恒成立,即
………(7分)从而
………(8分)记,
………(10分)当时,在单调递增,
………(12分)从而
………(13分)
略20.本题18分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,。数列满足,为数列的前n项和。(1)求、和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由。参考答案:、(1)(法一)在中,令,,得
即
……………2分解得,,
……………3分.,.
……………5分(法二)是等差数列,.
…2分由,得,
又,,则.
………………3分(求法同法一)(2)①当为偶数时,要使不等式恒成立,即需不等式恒成立.
…………6分
,等号在时取得.
此时
需满足.
……7分②当为奇数时,要使不等式恒成立,即需不等式恒成立.
………8分
是随的增大而增大,时取得最小值.此时
需满足.
…………………9分综合①、②可得的取值范围是.
………………10分(3),
若成等比数列,则,即.…12分(法一)由,可得,即,
…………14分.
………16分又,且,所以,此时.因此,当且仅当,时,数列中的成等比数列.……18分(法二)因为,故,即,,(以下同上).
…………………16分略21.已知函数
(I)求f(x)在(e为自然对数的底数)处的切线方程.(II)求f(x)的最小值.参考答案:(I);(II)【分析】(I)对函数求导,把分别代入导数与原函数中求出,,由点斜式即可得到切线方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现浇钢筋混凝土课程设计
- 2024年度田土承包经营权租赁与农产品加工合同3篇
- 2024年特定医疗服务授权代理协议版B版
- 投标主体诚信承诺书(7篇)
- 我的前半生看后感言
- 2025年山东济宁梁山县公开招聘县属国企业高级经营管理人员管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁市兖州区事业单位招聘工作人员(教育类)166人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南市历城区事业单位招聘工作人员59人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东泰安市岱岳区直事业单位招考管理单位笔试遴选500模拟题附带答案详解
- 2025年山东枣庄滕州市事业单位招聘工作人员60人历年管理单位笔试遴选500模拟题附带答案详解
- 常见皮肤病与护理
- 安全生产法律法规注册安全工程师考试(初级)试题与参考答案(2024年)一
- 2024年人教版小学六年级上学期期末英语试题与参考答案
- 华东师范大学《法学导论(Ⅰ)》2023-2024学年第一学期期末试卷
- 2024年公文写作基础知识竞赛试题库及答案(共130题)
- 数据管理制度完整
- 医疗组长竞聘
- 防止食品安全传染病
- 3外架专项施工方案
- 工程施工日志60篇
- 期末复习试题 (试卷)-2024-2025学年四年级上册数学人教版
评论
0/150
提交评论