2023人教版·文科数学新课标高考总复习专项演练:第十一章 概率 11-1高考数学考点难点分析_第1页
2023人教版·文科数学新课标高考总复习专项演练:第十一章 概率 11-1高考数学考点难点分析_第2页
2023人教版·文科数学新课标高考总复习专项演练:第十一章 概率 11-1高考数学考点难点分析_第3页
2023人教版·文科数学新课标高考总复习专项演练:第十一章 概率 11-1高考数学考点难点分析_第4页
2023人教版·文科数学新课标高考总复习专项演练:第十一章 概率 11-1高考数学考点难点分析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11-1A组专项基础训练(时间:45分钟)1.(教材改编)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶【解析】射击两次的结果有:一次中靶;二次中靶;两次都不中靶,故至少一次中靶的互斥事件是两次都不中靶.【答案】D2.下列命题:①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B互为对立事件;④若事件A与B互为对立事件,则事件A∪B为必然事件.其中,真命题是()A.①②④B.②④C.③④D.①②【解析】对①一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M与N是互斥事件,但不是对立事件,故①错;对②对立事件首先是互斥事件,故②正确;对③互斥事件不一定是对立事件,如①中两个事件,故③错;对④事件A、B为对立事件,则这一次试验中A、B一定有一个要发生,故④正确.故B正确.【答案】B3.从6个男生2个女生中任选3人,则下列事件中必然事件是()A.3个都是男生B.至少有1个男生C.3个都是女生D.至少有1个女生【解析】因为只有2名女生,所以选出的3人中至少有一个男生.【答案】B4.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是eq\f(3,10),那么概率是eq\f(7,10)的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【解析】至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.【答案】A5.甲、乙二人玩数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为()A.eq\f(1,3)B.eq\f(5,9)C.eq\f(2,3)D.eq\f(7,9)【解析】甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为3×3=9.设甲、乙“心有灵犀”为事件A,则A的对立事件B为“|a-b|>1”,即|a-b|=2包含2个基本事件,∴P(B)=eq\f(2,9),∴P(A)=1-eq\f(2,9)=eq\f(7,9).【答案】D6.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件.【答案】③②①7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有________个.【解析】1-0.42-0.28=0.30,21÷0.42=50,50×0.30=15.【答案】158.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为________.【解析】20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为eq\f(5,20)=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.【答案】0.259.黄种人群中各种血型的人所占的百分比如下表所示:血型ABABO该血型的人所占比/%2829835已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?【解析】(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′∪D′.根据互斥事件的加法公式,有P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)方法一:由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.方法二:因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(A′∪C′)=P(B′∪D′)=1-P(B′∪D′)=1-0.64=0.36.10.(2015·陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期12345678910天气晴雨阴阴阴雨阴晴晴晴日期11121314151617181920天气阴晴晴晴晴晴阴雨阴阴日期21222324252627282930天气晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.【解析】(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为eq\f(26,30)=eq\f(13,15).(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为eq\f(7,8).以频率估计概率,运动会期间不下雨的概率为eq\f(7,8).B组专项能力提升(时间:25分钟)11.一个人掷骰子(均匀正方体形状的骰子)游戏,在他连续掷5次都掷出奇数点朝上的情况下,掷第6次奇数点朝上的概率是()A.eq\f(1,2)B.eq\f(1,3)C.eq\f(1,6)D.eq\f(1,4)【解析】无论哪一次掷骰子都有6种情况.其中有3种奇数点朝上,另外3种偶数点朝上.故掷第6次奇数点朝上的概率是eq\f(1,2),故选A.【答案】A12.设事件A,B,已知P(A)=eq\f(1,5),P(B)=eq\f(1,3),P(A∪B)=eq\f(8,15),则A,B之间的关系一定为()A.两个任意事件B.互斥事件C.非互斥事件D.对立事件【解析】因为P(A)+P(B)=eq\f(1,5)+eq\f(1,3)=eq\f(8,15)=P(A∪B),所以A,B之间的关系一定为互斥事件.【答案】B13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为eq\f(7,15),取得两个绿球的概率为eq\f(1,15),则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.【解析】(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P=eq\f(7,15)+eq\f(1,15)=eq\f(8,15).(2)由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率P(A)=1-P(B)=1-eq\f(1,15)=eq\f(14,15).【答案】eq\f(8,15)eq\f(14,15)14.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.【解析】“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P=eq\f(11+10+7+8,6+7+8+8+10+10+11)=eq\f(3,5).“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P=1-eq\f(8,6+7+8+8+10+10+11)=eq\f(13,15).【答案】eq\f(3,5)eq\f(13,15)15.如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.【解析】记其中被污损的数字为x,依题意得甲的五次综合测评的平均成绩是eq\f(1,5)(80×2+90×3+8+9+2+1+0)=90,乙的五次综合测评的平均成绩是eq\f(1,5)(80×3+90×2+3+3+7+x+9)=eq\f(1,5)(442+x),令90>eq\f(1,5)(442+x),解得x<8,所以x的可能取值是0~7,因此甲的平均成绩超过乙的平均成绩的概率为eq\f(8,10)=eq\f(4,5).【答案】eq\f(4,5)16.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.【解析】(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为所用时间(分钟)10~2020~3030~4040~5050

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论