成人高考数复习资料(高起专)_第1页
成人高考数复习资料(高起专)_第2页
成人高考数复习资料(高起专)_第3页
成人高考数复习资料(高起专)_第4页
成人高考数复习资料(高起专)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年成人高考-数学知识提纲数学复习资料1.集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、4、5.2.充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若,则A是B的充分条件;若,则A是B的必要条件;若A=B,则A是B的充要条件。例1:对“充分必要条件”的理解.请看两个例子:(1)“”是“”的什么条件?(2)是的什么条件?我们知道,若,则A是B的充分条件,若“”,则A是B的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“若,即是A能推出B”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象”的;如果用“A中的所有元素能满足B”的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,即集合,当中的元素不能满足或者说不属于,但的元素能满足或者说属于.假设,则满足“”,故“”是“”的必要非充分条件,同理是的必要非充分条件.3.直角坐标系注意某一点关于坐标轴、坐标原点、的坐标的写法。如点(2,3)关于轴对称坐标为(2,-3),点(2,3)关于轴对称坐标为(-2,3),点(2,3)关于原点对称坐标为(-2,-3),点(2,3)关于轴对称坐标为(3,2),点(2,3)关于轴对称坐标为(-3,-2),4.函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。5.会求函数的定义域,做21页第一大题6.函数的定义域、值域、解析式、单调性、奇偶性性、周期是重要的研究内容,尤其是定义域、一次和二次函数的解析式,单调性最重要。7.函数的奇偶性。(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法:②利用函数奇偶性定义的等价形式:或()。③图像法:奇函数的图象关于原点对称;偶函数的图象关于轴对称。常见奇函数:,指数是奇数常见偶函数:一些规律:两个奇函数相加或者相减还是奇函数,两个偶函数相加或者相减还是偶函数,但是两种函数加减就是非奇非偶,两种函数乘除是奇函数,例如是奇函数.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.②如果奇函数有反函数,那么其反函数一定还是奇函数.③若为偶函数,则.④奇函数定义域中含有0,则必有.故是为奇函数的既不充分也不必要条件。8.函数的单调性:一般用来比较大小,而且主要用来比较指数函数、对数函数的大小,此外,反比例函数、一次函数、二次函数的单调性也比较重要,要熟记他们的图像的分布和走势。熟记课本第11页至13页的图和相关结论。一次函数、反比例函数p17例5p20例89.二次函数表达形式有三种:一般式:;顶点式:;零点式:,要会根据已知条件的特点,灵活地选用二次函数的表达形式。课本中的p17例5(4)例6、例7,例10例11;习题p238、9、10、1110.一元一次不等式的解法关键是化为,再把的系数化为1,注意乘以或者除以一个负数不等号的方向要改变;一元一次不等式组最后取个不等式的交集,即数轴上的公共部分。做p424、5、6大题11.绝对值不等式只要求会做:和或者,一定会去绝对值符号。做p43712.一元二次不等式是重点,阅读课文33至34的图表及39至42页的例题。做43页8、9、10、11、12设,是方程的两实根,且,则其解集如下表:或或RRR对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。2.向量的数量积的运算律:(1)a·b=b·a(交换律);(2)(a)·b=(a·b)=a·b=a·(b);(3)(a+b)·c=a·c+b·c.切记:两向量不能相除(相约);向量的“乘法”不满足结合律,4.向量平行的坐标表示

设a=,b=,且b0,则ab(b0).5.a与b的数量积(或内积)a·b=|a||b|cosθ.6.a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.7.平面向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=.(3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则a·b=.8.两向量的夹角公式(a=,b=).9.平面两点间的距离公式(A,B).=10.向量的平行与垂直设a=,b=,且b0,则A||bb=λa.ab(a0)a·b=0.11.“按向量平移”:点按向量a=平移后得到点.23.直线方程(重点章节)看132至135页例1、2、31.直线的五种方程(1)点斜式(直线过点,且斜率为).(2)斜截式(b为直线在y轴上的截距).(3)两点式()(、()).(4)截距式(为直线横纵截距,(5)一般式(其中A、B不同时为0).2..两条直线的平行和垂直(1)若,①;②.(2)若,,且A1、A2、B1、B2都不为零,①;②;3.点到直线的距离(点,直线:).4.圆的四种方程做一做第153页练习1、2、3(1)圆的标准方程.(2)圆的一般方程(>0).5.直线与圆的位置关系直线与圆的位置关系有三种:;;.其中.二.基础知识:(一)椭圆及其标准方程p159例1、例21.椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.2.椭圆的标准方程:(>>0)3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.3椭圆的简单几何性质(>>0).椭圆的几何性质:设椭圆方程线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,离心率:0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.4双曲线及其标准方程p167例1、例2双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.5.双曲线的简单几何性质双曲线实轴长为2a,虚轴长为2b,离心率离心率e越大,开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论