




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页精选八年级数学教案汇总6篇精选八年级数学教案汇总6篇八年级数学教案篇1教学目的1、知识与技能目的学会观察图形,勇于探究图形间的关系,培养学生的空间观念.2、过程与方法(1)经历一般规律的探究过程,开展学生的抽象思维才能.(2)在将实际问题抽象成几何图形过程中,进步分析^p问题、解决问题的才能及浸透数学建模的思想.3、情感态度与价值观(1)通过有趣的问题进步学习数学的兴趣.(2)在解决实际问题的过程中,体验数学学习的实用性.教学重点:探究、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学准备:多媒体教学过程:第一环节:创设情境,引入新课〔3分钟,学生观察、猜测〕情景:如图:在一个圆柱石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?第二环节:合作探究〔15分钟,学生分组合作探究〕学生分为4人活动小组,合作探究蚂蚁爬行的最短道路,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的道路计算方法,通过详细计算,总结出最短道路。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.学生汇总了四种方案:〔1〕〔2〕〔3〕〔4〕学生很容易算出:情形〔1〕中A→B的道路长为:AA’+d,情形〔2〕中A→B的道路长为:AA’+πd/2所以情形〔1〕的道路比情形〔2〕要短.学生在情形〔3〕和〔4〕的比拟中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形〔4〕是线段,故根据两点之间线段最短可判断〔4〕最短.如图:〔1〕中A→B的道路长为:AA’+d;〔2〕中A→B的道路长为:AA’+A’B>AB;〔3〕中A→B的道路长为:AO+OB>AB;〔4〕中A→B的道路长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,详细观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,假设圆柱体高为12c,底面半径为3c,π取3,那么.第三环节:做一做〔7分钟,学生合作探究〕教材23页李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,〔1〕你能替他想方法完成任务吗?〔2〕李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?〔3〕小明随身只有一个长度为20厘米的刻度尺,他能有方法检验AD边是否垂直于AB边吗?BC边与AB边呢?第四环节:稳固练习〔10分钟,学生独立完成〕1.甲、乙两位探险者到沙漠进展探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近间隔.3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,铁棒在油桶外的局部为0.5米,问这根铁棒有多长?第五环节课堂小结〔3分钟,师生问答〕内容:1、如何利用勾股定理及逆定理解决最短路程问题?第六环节:布置作业〔2分钟,学生分别记录〕内容:作业:1.课本习题1.5第1,2,3题.要求:A组〔学优生〕:1、2、3B组〔中等生〕:1、2C组〔后三分之一生〕:1板书设计:教学反思:八年级数学教案篇2教学目的1.使学生纯熟地运用等腰三角形的性质求等腰三角形内角的角度。2.熟识等边三角形的性质及断定.2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重点等腰三角形的性质及其应用。教学难点简洁的逻辑推理。教学过程一、复习稳固1.表达等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称等边对等角。把等腰三角形对折,折叠两局部是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称三线合一。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此三线合一。2.假设等腰三角形的两边长为3和4,那么其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜测。2.你能否用的知识,通过推理得到你的猜测是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到B=C,又由B+C=180,从而推出B=C=60。3.上面的条件和结论如何表达?等边三角形的各角都相等,并且每一个角都等于60。等边三角形是轴对称图形吗?假如是,有几条对称轴?等边三角形也称为正三角形。例1.在△ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的度数。分析^p:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由三线合一可知AD是△ABC的顶角平分线,底边上的高,从而ADC=90,BAC,由于B=30,BAC可求,所以1可求。问题1:此题假设将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?问题2:求1是否还有其它方法?三、练习稳固1.判断以下命题,对的打,错的打。a.等腰三角形的角平分线,中线和高互相重合()b.有一个角是60的等腰三角形,其它两个内角也为60()2.如图(2),在△ABC中,AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。四、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。三线合一性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。五、作业1.课本P127─7,92、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。(一)课本P127─1、3、4、8题.八年级数学教案篇3第一步:情景创设乒乓球的标准直径为40mm,质检部门从A、B两厂消费的乒乓球中各抽取了10只,对这些乒乓球的直径了进展检测。结果如下〔单位:mm〕:A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.你认为哪厂消费的乒乓球的直径与标准的误差更小呢?〔1〕请你算一算它们的平均数和极差。〔2〕是否由此就断定两厂消费的乒乓球直径同样标准?今天我们一起来探究这个问题。探究活动通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做以下的数学活动算一算把所有差相加,把所有差取绝对值相加,把这些差的平方相加。想一想你认为哪种方法更能明显反映数据的波动情况?第二步:讲授新知:〔一〕方差定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差〔variance〕,记作。意义:用来衡量一批数据的波动大小在样本容量一样的情况下,方差越大,说明数据的波动越大,越不稳定归纳:〔1〕研究离散程度可用〔2〕方差应用更广泛衡量一组数据的波动大小〔3〕方差主要应用在平均数相等或接近时〔4〕方差大波动大,方差小波动小,一般选波动小的方差的简便公式:推导:以3个数为例〔二〕标准差:方差的算术平方根,即④并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是可以反映一组数据的波动大小的一个统计量,老师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。八年级数学教案篇4教材分析^p因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否认因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的根底上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有亲密的联络。分解因式的变形不仅表达了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的根底,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还表达在使学生承受对立统一的观点,培养学生擅长观察、擅长分析^p、正确预见、解决问题的才能。学情分析^p通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克制困难的意志建立自信心。教学目的1、在分解因式的过程中体会整式乘法与因式分解之间的联络。2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步开展观察、归纳、类比、等才能,开展有条理地考虑及语言表达才能。3、能运用提公因式法、公式法进展综合运用。4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。教学重点和难点重点:灵敏运用平方差公式进展分解因式。难点:平方差公式的推导及其运用,两种因式分解方法〔提公因式法、平方差公式〕的综合运用。八年级数学教案篇5一、教学目的1.理解一个数平方根和算术平方根的意义;2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;3.通过本节的训练,进步学生的逻辑思维才能;4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探究数学奥秘的兴趣。二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。教学难点:平方根与算术平方根联络与区别。三、教学方法讲练结合四、教学手段幻灯片五、教学过程〔一〕提问1、一正方形面积为50平方米,那么它的边长应为多少?2、一个数的平方等于1000,那么这个数是多少?3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空1、〔〕2=9;2、〔〕2=0、25;3、5、〔〕2=0、0081学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。由练习引出平方根的概念。〔二〕平方根概念假如一个数的平方等于a,那么这个数就叫做a的平方根〔二次方根〕。用数学语言表达即为:假设x2=a,那么x叫做a的平方根。由练习知:±3是9的平方根;±0.5是0。25的平方根;0的平方根是0;±0.09是0。0081的平方根。由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:〔〕2=—4学生考虑后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质〔可由学生总结,老师整理〕。〔三〕平方根性质1.一个正数有两个平方根,它们互为相反数。2.0有一个平方根,它是0本身。3.负数没有平方根。〔四〕开平方求一个数a的平方根的运算,叫做开平方的运算。由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法那么不同之处在于只能对非负数进展运算,而且正数的运算结果是两个。〔五〕平方根的表示方法一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“—”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”。练习:1.用正确的符号表示以下各数的平方根:①26②247③0。2④3⑤解:①26的平方根是②247的平方根是③0。2的平方根是④3的`平方根是⑤的平方根是由学生说出上式的读法。例1。以下各数的平方根:〔1〕81;〔2〕;〔3〕;〔4〕0。49解:〔1〕∵〔±9〕2=81,∴81的平方根为±9。即:〔2〕的平方根是,即〔3〕的平方根是,即〔4〕∵〔±0。7〕2=0。49,∴0。49的平方根为±0。7。小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。六、总结本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,稳固所学知识。七、作业教材P。127练习1、2、3、4。八、板书设计平方根〔一〕概念〔四〕表示方法例1〔二〕性质〔三〕开平方探究活动求平方根近似值的一种方法求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。例1。求的值。解∵92102,两边平方并整理得∵x1为纯小数。18x1≈16,解得x1≈0。9,便可依次得到准确度为0。01,0。001,……的近似值,如:两边平方,舍去x2得19.8x2≈—1.01八年级数学教案篇6教学目的:1、理解运用平方差公式分解因式的方法。2、掌握提公因式法和平方差公式分解因式的综合运用。3、进一步培养学生综合、分析^p数学问题的才能。教学重点:运用平方差公式分解因式。教学难点:高次指数的转化,提公因式法,平方差公式的灵敏运用。教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描绘?把上述公式反过来就得到_____,如何用语言描绘?2、以下多项式能用平方差公式分解因式吗?假设能,请写出分解过程,假设不能,说出为什么?①-x2+y2②-x2-y2③4-9x2④(x+y)2-(x-y)2⑤a4-b43、试总结运用平方差公式因式分解的条件是什么?4、仿照例4的分析^p及旁白你能把x3y-xy因式分解吗?5、试总结因式分解的步骤是什么?师巡回指导,生自主探究后交流合作。生交流热情很高,但把全部问题分析^p完已用了30分钟。生展示自学成果。生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。生5:a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……反思:这节课我备课比拟认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按方案完成教学任务,学生练习很少,作业有很大一局部
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邵阳市新邵县2025届四下数学期末检测模拟试题含解析
- 房产最高额担保合同
- 宽城满族自治县2025年数学五年级第二学期期末综合测试模拟试题含答案
- 2025年度企业单位借款合同范例
- 山东省枣庄市滕州市2024-2025学年高二下学期第一次检测历史试卷(含答案)
- 餐饮服务外包合同范本多条款
- 科研仪器设备采购合同
- 物资供应合同
- 傣族民间舞的风格特点
- 三年级上册4、水生植物教案
- 天然气推广活动方案
- DB34-T 4442.4-2023 煤矿水害防治 第4部分:老空水害防治
- 2025年1月浙江省高考物理试卷(含答案)
- 体育赛事活动策划与执行
- 气管切开非机械通气患者气道护理团体标准课件
- 保洁人员服务方案和岗前培训
- NES-3000 ECDIS电子海图显示与信息系统操作手册
- DB11-T 311.1-2019 城市轨道交通工程质量验收标准 第1部分:土建工程
- 八年级下册历史:问答式复习提纲
- 2025年中国氢气传感器行业市场深度分析及投资策略研究报告
- 幼儿园亲子采摘活动策划方案四篇
评论
0/150
提交评论