




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第#页共25页(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?长方体和圆柱体的底面积和体积有怎样的关系?学生说演示过程,总结推倒公式。(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)《圆柱的体积》数学教案5教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。教学重难点掌握圆柱的体积公式,并能运用其解决简单实际问题。理解圆柱体积公式的推导过程。教学工具推导圆柱体积公式的圆柱教具一套。教学过程复习导入1、口头回答。(1) 什么叫体积怎样求长方体的体积(2) 怎样求圆的面积圆的面积公式是什么(3) 圆的面积公式是怎样推导的在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。2、引入新课。我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢教师板书:圆柱的体积(1)。新课讲授1、教学圆柱体积公式的推导。教师演示。把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。学生利用学具操作。启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形学生:近似的长方体。②通过刚才的实验你发现了什么教师:拼成的近似长方体和圆柱相比,体积大小变了没有形状呢学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。学生根据圆的面积公式推导过程,进行猜想:如果把圆柱的底面平均分成32份,拼成的形状是怎样的如果把圆柱的底面平均分成64份,拼成的.形状是怎样的如果把圆柱的底面平均分成128份,拼成的形状是怎样的启发学生说出:通过以上的观察,发现了什么平均分的份数越多,拼起来的形状越接近长方体。平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。推导圆柱的体积公式。①学生分组讨论:圆柱的体积怎样计算②学生汇报讨论结果,并说明理由。教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积二底面积X高。2、教学补充例题。出示补充例题:一根圆柱形钢材,底面积是1250P某2,高是2.1m。它的体积是多少指名学生分别回答下面的问题:这道题已知什么求什么能不能根据公式直接计算计算之前要注意什么学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。出示下面几种解答方案,让学生判断哪个是正确的。50X2.1=105(cm3)答:它的体积是2625p某3。2.1m=5250p某50X210=10500(cm3)答:它的体积是P某3。1250p某2=0.5m20.5X2.1=1.05(m3)答:它的体积是1.05m3。1250p某2=0.005m20.005X2.1=0.0105(m3)答:它的体积是0.0105m3。先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的教师板书:V=nr2h。课堂作业教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。答案:“做一做”:1.6750(cm3)2.7.85m3第1题:(从左往右)3.14X52X2=157(cm3)3.14X(4F2)2X12=150.72(cm3)3.14X(8F2)2X8=401.92(cm3)课堂小结通过这节课的学习,你有什么收获你有什么感受课后作业完成练习册中本课时的练习。第4课时圆柱的体积(1)课后小结1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。课后习题教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。答案:“做一做”:1.6750(cm3)2.7.85m3第1题:(从左往右)3.14X52X2=157(cm3)3.14X(4F2)2X12=150.72(cm3)3.14X(8F2)2X8=401.92(cm3)《圆柱的体积》数学教案6教学目标:1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。教学重点:圆柱体积计算公式的推导过程并能正确应用。教学难点:借助教具演示,弄清圆柱与长方体的关系。教具准备:多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。教学设想:《圆柱的体积》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识从生活中来到生活去的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。教学过程:一、创设情境,激疑引入水是生命之源!节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。1、出示装了水的圆柱容器。(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?(2)讨论后汇报生1:用量筒或量杯直接量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]2、创设问题情境。师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)二、经历体验,探究新知1、回顾旧知,帮助迁移(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?生1:圆柱的上下两个底面是圆形生2:侧面展开是长方形生3:说明圆柱和我们学过的圆和长方形有联系师:请同学们想想圆柱的体积与什么有关?生1:可能与它的大小有关生2:不是吧,应该与它的高有关[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。](2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。配合学生回答演示课件。[设计意图:通过想象,进一步发展学生的空间观念,由形到体;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]2、小组合作,探究新知(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)(2)学生以小组为单位操作体验。把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的越接近,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份)[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。](3)学生小组汇报交流近似的长方体的体积等于圆柱的体积,近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。教师根据学生汇报,用教具进行演示。(4)概括板书:根据圆柱与近似长方体的关系,推导公式长方体的体积=底面积高圆柱的体积=底面积高用字母表示计算公式V=sh[设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识公式)]三、实践应用,巩固新知。1、火眼金睛判对错。(1) 长方体、正方体、圆柱的体积都等于底面积乘高。()(2) 圆柱的高越大,圆柱的体积就越大。()(3) 如果两个圆柱的体积相等,则它们一定等底等高。()[设计意图:加深对刚学知识的分析和理解。]2、 计算下面各圆柱的体积。(1) 底面积是30平方厘米,高4厘米。(2) 底面周长是12。56米,高是2米。(3) 底面半径是2厘米,高10厘米。[设计意图:让学生灵活运用公式进行计算。]3、 实践练习。提供在创设情景中圆柱形接水容器的内底面直径和高。这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。[设计意图:让学生领悟数学与现实生活的联系。]4、课堂作业。为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]四、反思回顾师:通过本节课的学习,你有什么收获吗?[设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]板书设计:圆柱的体积根据圆柱与近似长方体的关系,推导公式长方体的体积=底面积高圆柱的体积=底面积高用字母表示计算公式V=sh教学反思:本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。《圆柱的体积》数学教案7一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。二、教学重难点教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。教学难点:转化前后的沟通。三、教学准备每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。四、教学过程(一)复习旧知,做好铺垫1、板书:圆柱的体积。问:圆柱的体积怎么计算?体积和容积有什么区别?2、揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题)通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。(二)探索实践,体验转化过程1、创设情境,提出问题。每个小组桌子上有一个没有装满水的矿泉水瓶。教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)预设1:瓶子还有多少水?(剩下多少水?)预设2:喝了多少水?(也就是瓶子的空气部分。)预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2、你觉得你能轻松解决什么问题?(1)预设1:瓶子有多少水?(怎么解决?)学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!(2)预设2:喝了多少水?学生:喝掉部分的形状是不规则,没有办法计算。教师:当物体形状不规则时,我们想求出它的体积可以怎么办?教师相机引导:能否将空气部分变成一个规则的立体图形呢?学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?《圆柱的体积》数学教案8教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。教学重点:掌握圆柱体积的计算公式。教学难点:灵活应用圆柱的体积公式解决实际问题。教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。2、 复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。二、解决实际问题1、练习三第7题。学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。2、练习三第5题。指导学生变换公式:因为V二Sh,所以h=VS。也可以列方程解答。学生选择喜爱的方法解答这道题目。3、 练习三第8题。学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。在充分理解题意后学生独立完成,集体订正。4、练习三第9、10题学生独立审题,完成9、10两题。评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。三、布置作业完成一课三练的相关练习。《圆柱的体积》数学教案9教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1) 如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2) 如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3) 如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1) 平均分的份数越多,拼起来的形体越近似于长方体.(2) 平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1) 学生分组讨论:圆柱体的体积怎样计算?(2) 学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积X高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积X高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2。1米,它的体积是多少?2。1米=210厘米50X210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1) 一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2) 一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级上册数学教案-角的初步认识 (6)-西师大版
- 2025年宠物领养合同模板电子版
- 三年级下册数学教案-1.1 两位数乘整十数的口算-苏教版
- 薪酬培训服务协议书(2篇)
- 2023年生麻生产投资申请报告
- 2024年局域网安全系统项目资金申请报告
- 2025年惠州城市职业学院单招职业倾向性测试题库学生专用
- 2025年广东省安全员B证考试题库及答案
- 2025年湖北省咸宁市单招职业倾向性测试题库一套
- 二零二五年度煤炭开采居间合同与智能化矿山建设协议
- 2023年新疆省公务员录用考试《行测》真题卷及答案解析
- 2024年国网公司企业文化与职业道德试考试题库(含答案)
- 牙周牙髓联合病变治疗
- 机场食品配送应急处理方案
- 医院培训课件:《黄帝内针临床运用》
- 语文新课标“整本书阅读”深度解读及案例
- 地质队安全培训
- 2024至2030年中国毛绒玩具数据监测研究报告
- 建筑复工复产安全培训
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 八年级上学期语文12月月考试卷
评论
0/150
提交评论