版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教师资格之中学数学学科知识与教学能力真题练习提分A卷带答案
单选题(共50题)1、正常人外周血经PHA刺激后,其T细胞转化率是A.10%~30%B.70%~90%C.50%~70%D.60%~80%E.30%~50%【答案】D2、下列哪项不是B细胞的免疫标志A.CD10B.CD19C.CD64D.HLA-DRE.CD22【答案】C3、下列描述为演绎推理的是()。A.从-般到特殊的推理B.从特殊到-般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】A4、DIC时血小板计数一般范围是A.(100~300)×10B.(50~100)×10C.(100~300)×10D.(100~300)×10E.(100~250)×10【答案】B5、设a,b为非零向量,下列命题正确的是()(易错)(1)a×b垂直于a;(2)a×b垂直于b;(3)a×b平行于a;(4)a×b平行于b。正确的个数是()A.0个B.1个C.3个【答案】C6、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】A7、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】B8、有人称之谓“打扫战场的清道夫”的细胞是A.淋巴细胞B.中性粒细胞C.嗜酸性粒细胞D.单核细胞E.组织细胞【答案】D9、下列对向量学习意义的描述:A.1条B.2条C.3条D.4条【答案】D10、下面哪位不是数学家?()A.祖冲之B.秦九韶C.孙思邈D.杨辉【答案】C11、男,17岁、发热、牙跟出血15d,化验检查:血红蛋白65g/L,白细胞2.2×10A.ITPB.AAC.急性白血病D.类白血病反应E.CML【答案】D12、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C13、男性,30岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且HIV筛查试验为阳性结果。若该患者进行T细胞亚群测定,最可能出现的结果为A.CD4B.CD4C.CD8D.CD8E.CD4【答案】A14、细胞因子诱导产物测定法目前最常用于测定A.IL-1B.INFC.TNFD.IL-6E.IL-8【答案】A15、学生是数学学习的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()。A.组织者B.引导者C.合作者D.指挥者【答案】D16、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、扁桃体【答案】A17、已知向量a与b的夹角为π/3,且|a|=1,|b|=2,若m=λa+b与n=2a-b互相垂直,则λ的为()。A.-2B.-1C.1D.2【答案】D18、《义务教育课程次标准(2011年版)》“四基”中“数学的基本思想”,主要是:①数学抽象的思想;②数学推理的思想;③数学建模的思想。其中正确的是()。A.①B.①②C.①②③D.②③【答案】C19、乙酰胆碱是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】B20、“矩形”和“菱形”概念之间的关系是()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B21、激活凝血因子X的内源性激活途径一般开始于A.接触激活因子ⅫB.血小板聚集C.损伤组织因子ⅢD.磷脂酸粒表面阶段E.凝血酶原激活【答案】A22、纤溶酶的生理功能下列哪项是错误的()A.降解纤维蛋白和纤维蛋白原B.抑制组织纤溶酶原激活物(t-PA)C.水解多种凝血因子D.使谷氨酸纤溶酶转变为赖氨酸纤溶酶E.水解补体【答案】B23、患者,女,25岁。因咳嗽、发热7天就诊。查体T37.8℃,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】C24、3~6个月胚胎的主要造血器官是A.骨髓B.脾脏C.卵黄囊D.肝脏E.胸腺【答案】D25、成熟红细胞的异常形态与疾病的关系,下列哪项不正确()A.点彩红细胞提示铅中毒B.棘形红细胞提示β脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰形红细胞提示HbF增高E.红细胞缗钱状形成提示高纤维蛋白原血症【答案】D26、女,20岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断为系统性红斑狼疮(SLE),下列可作为SLE特异性标志的自身抗体为A.抗DNP抗体和ANAB.抗dsDNA抗体和抗Sm抗体C.抗dsDNA抗体和ANAD.抗ssDNA抗体和抗ANAE.抗SSA抗体和抗核蛋白抗体【答案】B27、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B28、Ⅳ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】C29、男性,30岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且HIV筛查试验为阳性结果。其确诊的试验方法选用A.ELISA法B.免疫扩散法C.免疫比浊法D.免疫印迹法E.化学发光法【答案】D30、男,30岁,受轻微外伤后,臀部出现一个大的血肿,患者既往无出血病史,其兄有类似出血症状;检验结果:血小板300×10A.ITPB.血友病C.遗传性纤维蛋白原缺乏症D.DICE.Evans综合征【答案】B31、荧光着色主要在细胞核周围形成荧光环的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】C32、辅助性T细胞的标志性抗原为A.CD3B.CD3C.CD3D.CD3E.CD3【答案】A33、下列关于数学思想的说法中,错误的一项是()A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】B34、免疫学法包括A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】B35、男性,35岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下2cm,脾肋下1cm,浅表淋巴结未及。血象:RBC2.30×10A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】C36、儿茶酚胺是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】D37、造血干细胞出现的表面标志是A.CD34、CD38、Thy-1B.CD34、CD36、c-kitC.CD34、CD38、c-kitD.CD33、CD34、Thy-1E.CD33、CD34、c-kit【答案】A38、内源凝血途径的始动因子是下列哪一个A.ⅩB.ⅧC.因子ⅨD.ⅫE.ⅩⅢ【答案】D39、室间质控应在下列哪项基础上进一步实施A.愈小愈好B.先进设备C.室内质控D.在允许误差内E.质控试剂【答案】C40、Th2辅助性T细胞主要分泌的细胞因子不包括A.IL-2B.IL-4C.IL-5D.IL-6E.IL-10【答案】A41、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D42、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下3.0cm,肝肋下1.5cm。检验:血红蛋白量150g/L,血小板数1100×10A.凝血因子减少B.鼻黏膜炎症C.血小板功能异常D.鼻黏膜下血管畸形E.血小板数增多【答案】C43、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D44、粒细胞功能中具有共性的是()A.调理作用B.黏附作用C.吞噬作用D.杀菌作用E.中和作用【答案】C45、下列疾病在蔗糖溶血试验时可以出现假阳性的是A.巨幼细胞性贫血B.多发性骨髓瘤C.白血病D.自身免疫性溶贫E.巨球蛋白血症【答案】C46、诊断急性白血病,外周血哪项异常最有意义()A.白细胞计数2×10B.白细胞计数20×10C.原始细胞27%D.分叶核粒细胞>89%E.中性粒细胞90%【答案】C47、编制数学测试卷的步骤一般为()。A.制定命题原则,明确测试目的,编拟双向细目表,精选试题B.明确测试目的,制定命题原则,精选试题,编拟双向细目表C.明确测试目的,制定命题原则,编拟双向细目表,精选试题D.明确测试目的,编拟双向细目表,精选试题,制定命题原则【答案】B48、标准定值血清可用来作为A.室间质控B.室内检测C.变异系数D.平均值E.标准差【答案】B49、DIC诊断中血小板计数低于正常,PT延长,Fbg低于2g/L。如果这三项中只有两项符合,必须补做哪一项纤溶指标A.3P试验B.PRTC.血小板抗体D.因子ⅧE.血小板功能试验【答案】A50、柯萨奇病毒感染引起糖尿病A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】D大题(共10题)一、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.二、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。三、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。四、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。五、在学习《有理数的加法》一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。六、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】七、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。八、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。九、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】一十、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高级项目经理聘用合同模板
- 二零二五年度二手房交易样本:共有产权房买卖合同3篇
- 2024年网络安全防护设备研发保密合同范本3篇
- 2024年电动车租赁购销合同
- 二零二五年度动产质押财产保全执行合同3篇
- 2024年度行政合同范本:行政主体合同履约优益权保障机制3篇
- 2024年虚拟现实技术研发生产销售合同
- 2024年电子设备运输与租赁合同
- 2024年股权转让具体合同模板:公司收购案例一
- 2024年精装家庭居室装修贷款合同
- 新能源发电技术 课件 第1章 绪论
- 甘肃省兰州市(2024年-2025年小学三年级语文)人教版综合练习(上学期)试卷(含答案)
- 2024年人教版小学四年级信息技术(上册)期末试卷及答案
- 中建医疗工程交付指南
- 译林版小学英语二年级上全册教案
- DL∕T 821-2017 金属熔化焊对接接头射线检测技术和质量分级
- DL∕ T 1195-2012 火电厂高压变频器运行与维护规范
- 小学五年级英语语法练习
- NB-T32004-2018光伏并网逆变器技术规范
- 领导与班子廉洁谈话记录(4篇)
- 衡阳市耒阳市2022-2023学年七年级上学期期末语文试题【带答案】
评论
0/150
提交评论