版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《试验设计与数据处理》第三章:统计推断3-13解:取假设H0:u1-u2^0和假设H1:u1-u2>0用sas分析结果如下:SampleStatisticsGroupNMeanStd.Dev.Std.Errorx80.2318750.01460.0051y100.20970.00970.0031HypothesisTestNullhypothesis:Mean1-Mean2=0Alternative:Mean1-Mean2a=0IfVariancesAretstatisticDfPr>tEqual3.878160.0013NotEqual3.70411.670.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。3-14解:用sas分析如下:HypothesisTestNullhypothesis: Variance1/Variance2=1Alternative: Variance1/Variance2A=1-DegreesofFreedom-F Numer.Denom. Pr>F2.27 7 9 0.2501由p值为0.2501>0.05(显著性水平),所以接受原假设,两方差无显著差异第四章:方差分析和协方差分析4-1解:Sas分析结果如下:DependentVariable:ySourceModelDF4SumofSourceModelDF4SumofSquaresMeanSquare1480.823000 370.205750FValuePr>F40.88 <.0001ErrorCorrectedTotal1519135.8225001616.6455009.054833R-Square CoeffVar RootMSE yMean0.91598513.12023 3.009125 22.93500SourceDFAnovaSSMeanSquareFValuePr>Fc41480.823000370.205750 40.88 <,0001由结果可知,p值小于0.001,故可认为在水平a=0.05下,这些百分比的均值有显著差异。4-2解:TheGLMProcedureDependentVariable:RSumofSourceDFSquaresMeanSquareFValuePr>FModel1182.83333337.5303030 1.39 0.2895Error1265.00000005.4166667CorrectedTotal23147.8333333R-Square CoeffVar RootMSE RMean0.56031622.34278 2.327373 10.41667SourceDFTypeISSMeanSquareFValuePr>Fm244.3333333322.16666667 4.09 0.0442n311.500000003.83333333 0.71 0.5657m*n627.000000004.50000000 0.83 0.5684SourceDFTypeIIISSMeanSquareFValuePr>Fm244.3333333322.16666667 4.09 0.0442n311.500000003.83333333 0.71 0.5657m*n627.000000004.50000000 0.83 0.5684由结果可知,在不同浓度下得率有显著差异,在不同温度下得率差异不明显,交互作用的效应不显著。4-4解:(1)不用协变量做方差分析
TheGLMProcedureDependentVanable:ySimiofSourceDFSquaresMeanSquareFValuePr>FModelErrorCorrectedTotal3 1041791667 347.263S89 1.3S20 J01SH56667 250.^0833323 <5059.938333R-Square 知^蹒 RootMSE yMeaM0171914 22.SS754 15.S4009 包2083302766SourceDFTypelSSMeanSquareFValuePr>Fy13300416&671.32026501的3.3方00002.7601120118J7500000070.7895SourceDFTypedSSMeanSquareFValuePr>FV1□□004166671J202650由分析结果可知,花的品种、温度和两者的交互作用对鲜花产量的影响都是不显著的。1ir37500000070JS9J(2)引入协变量作万差分析TheGLMProceduieDependentVariable:ySumofSourceDFSquaresMeanSquareFValuePr>FModel4□832.7190861458.179772121.92<0001Error19227.2392471L9J9M0CorrectsdTotal23W59.9jS333R-Square依液场 RootMSE yMean096250249MW7 3.45831S 69.20833SourceDFTypelSSMeanSquareFValuePr>Fy133004166727.150<0001勇1693.3烦。。.57.97<0001118.3750001.5402303514790.92741940058<0001SourceDFTypeHISSMeanSquareFValuePr>Fy1239442812000.17331479.288S6D4007<0001由分析结果可见,引入协变量后,-v、m、和x对鲜花产量的影响都是显著地。第五章:正交试验设计
5-3解:用L9(34)确定配比试验方案:试验方案因素试验号ABCD11(0.1份)1(0.3份)1(0.2份)1(0.5份)212(0.4份)2(0.1份)2(0.3份)313(0.5份)3(0.1份)3(0.1份)42(0.3份)123522316231273(0.2份)1328321393321以1号条件为例,表中四个数值的组成比为:A:B:C:D=0.1:0.3:0.2:0.5配比方案中,要求各行四个比值之和为1。在1号条件中,四种数值分别是1 1A=0.1x =0.091B=0.3x =0.2720.1+0.3+0.2+0.5 0.1+0.3+0.2+0.511
C=0.2x =0.182D=0.5x =0.4550.1+0.3+0.2+0.5 0.1+0.3+0.2+0.5其余实验条件可按照相同方法得出。第六章:回归分析6-6解:(1)作线性回归分析结果如下:Depaident'Variable:yAnalysisofVaianoeSumofMeanSource DFSquaresSquareFValuePr>FModel 315.645005.21» 1J.17 00119Error 41375000.34375CorrectedTotal ':7.02000RwtMSE0JS630R-Square 09192DependaitMean9900000.8586g堀 5.92224ParameterEstimatesParameterStandardVariableDFEstimateErrortValueIntercept19900000207294?.76<000110J7J000.207292.7700J011OL550000.207292.6500J6S11.15000020729000J2
由分析结果得回归方程为:y=9.90000+0.57500气+0.55000x2+1.15000x3由p值都小于0.1可知,每项都是显著的,方程也是显著的。(2)StepwiseSelection:Step3VariableEntered:R-Square=0.9192and0(p)=4.0000AnalysisofVarianceSumofMeanPSourceDFSquaresSquareFValuePr>FModel315.645003215001117 00119Error41375000.34375CorrectsdTotal7n.02000ParameterStandardVariableEstimateErrorTypeUSSFValuePr>FIntercept9.900000.20729784-080002280.96<0001057JOO0207292.64:007.69O.OjOlOjjOOO0.207292.420007.0400j6Sx3.IL50000.2072910.j800030.780.0052BoundsonconditiDnminiber:1.9由分析结果可知,故所求方程为:6-9x3+0.57500x+由分析结果可知,故所求方程为:6-9x3+0.57500x+1.15000x己二二二二[.・:1二…:m己三二3二:】NumberPartialDependentVar理1e:yRanged加In R-Square晾敏螂Op)FValuePr11 06216 城徵14.73459.S6002012xl- Stepwise.Selection:Step-1904003.48012093qVariablet9Entered:R-Sqyare=0.3473^nd(p(p)=175.75177.040.0568ModelAnalysisofVarianceSumofMeanSourceDF SquaresSquareFValuePr>FModel1 76.2438976.24389 7.45 0.0163Error14 143.2837110.23455CorrectedTotal15 219.52760Parameter StandardVariableEstimate ErrorTypeIISSFValuePr>FIntercept8.22980 1.38618360.74949 35.25<.0001t90.01056 0.0038776.24389 7.450.0163
Boundsonconditionnumber:1,1StepwiseSelection:Step2Variablet13Entered:R-Square=0.6717andC(p)=84.4265AnalysisofVarianceSumofMeanSourceDF SquaresSquareFValuePr>FModel2 147.4655173.73276 13.30 0.0007Error13 72.062095.54324CorrectedTotal15 219.52760Parameter StandardVariableEstimate ErrorTypeIISSFValuePr>FIntercept18.33483 2.99803207.32264 37.40<.0001t90.01173 0.0028792.81733 16.740.0013t13-1.89938 0.5298971.22162 12.850.0033StepwiseSelection:Step3Variablet5Entered:R-Square=0.7627andC(p)=60.2727AnalysisofVarianceSumofMeanSourceDF SquaresSquareFValuePr>FModel3 167.4249255.80831 12.85 0.0005Error12 52.102684.34189CorrectedTotal15 219.52760Parameter StandardVariableEstimate ErrorTypeIISSFValuePr>FIntercept19.49941 2.70837225.06452 51.84<.0001t50.00163 0.0007617619.95941 4.600.0532t90.00728 0.0032821.44626 4.940.0462t13-2.19305 0.4885687.48515 20.150.0007Boundsonconditionnumber:1.8185,13.825Allvariablesleftinthemodelaresignificantatthe0.1500level.Noothervariablemetthe0.1500significancelevelforentryintothemodel.SummaryofStepwiseSelectionVariableVariableNumberPartialModelStepEnteredRemovedVarsInR-SquareR-SquareC(p)FValuePr>F
Step1t910.34730.3473175.7527.450.01632t1320.32440.671784.426512.850.00333t530.09090.762760.27274.600.0532由结果可知,y=19.49941+0.00163xx+0.00728XXx-2.19305X-12 24 310解:(1)散点图如下:2015-v105-・.・・・246810 12 14可以采用Logistic拟合此数据。(2)用Logistic模拟结果为:DependentVariableyMethod:Gauss-NewtonSumofIterbcaSquares03.71802.000021.00001124.113.64081.849314.8393570.923.54751.668414.9977534.733.47041.520815.2362499.443.40461.396315.4814464.353.34691.288715.7348429.263.29551.194315.9985394.173.24911.110716.2735359.183.20691.036016.5601324.493.16840.969116.8579290.5103.13310.909117.1660257.6113.10080.855117.4829226.3123.07120.806717.8067196.8133.04420.763218.1349169.7143.01950.724218.4653145.1152.99710.689218.7951123.1162.97680.658019.1220104.0
172.95840.630019.443887.4241182.94200.605019.758673.4129192.92720.582720.064861.7148202.91400.562820.361052.0895212.90230.545020.646444.2826222.89200.529120.920338.0422232.88280.514921.182233.1304242.87480.502121.431929.3307252.86790.490721.669326.4509262.86180.480421.894624.3243272.85660.471122.107822.8087282.85220.462822.309421.7843292.84840.455322.499521.1514302.84530.448622.678720.8276312.84280.442522.847220.7456WARNING:Stepsizeshowsnoimprovement.WARNING:PROCNLINfailedtoconverge.EstimationSummary(NotConverged)MethodGauss-NewtonIterations31Subiterations29AverageSubiterations0.935484R0.653053PPC(c)0.012486TheNLINProcedureEstimationSummary(NotConverged)RPC.Object0.00394Objective20.74557ObservationsRead15ObservationsUsed15ObservationsMissing0NOTE:Aninterceptwasnotspecifiedforthismodel.SumofMeanApproxSourceDFSquaresSquareFValuePr>FRegression33245.51081.8625.77 <,0001Residual1220.74561.7288UncorrectedTotal153266.3CorrectedTotal14949.9ApproxParameterEstimateStdErrorApproximate95%ConfidenceLimitsb2.84280.004882.83212.8534c0.44250.003210.43550.4494a22.84720.574921.594724.0998
ApproximateCorrelationMatrixbcab1.00000000.7483922-0.2191675c0.74839221.0000000-0.4085662a-0.2191675-0.40856621.0000000故得二=二壬72p=2.8428y=0.4425第七章:回归正交设计7-1解:n=9作变换X=+1=z—38.5=2z-77,则x1=1,x2=2,x3=3,…,x9=9。0.5 0.5并可设y=b0+b101(x)+b202(x)+b202(x)+b4中4(x)对于n=9,查附表6,利用SAS软件进行回归多项式分析,结果如下:根据结果分析b0,b1,b2的P值小于0.05,是显著的,TheSASSystem21:16Wednesday,November14,2010TheORTHOREGProcedureDependentVariable:y12.072222222222220.030668717512.072222222222220.030668717567.57<.000110.11950.011877943210.060.000510.015277777777770.00174751248.740.00091-0.006292929292920.0029241475-2.150.097810.000174825174820.00205629220.090.9363b3,b4的P值大于0.05是不显著的,所以只需要配要二次项就行了。当n=9时,有:中(x)=入。(x)=x—511中(x)=m(X)=3X(x2—10x+758)=3x2—30x+37922 6SourceDFSumofSquaresMeanSquareFValuePr>FModelErrorCorrectedTotal1.54309502720.03386052841.57695555560.38577375680.008465132145.570.0014RootMSE 0.0920061525R-Square 0.9785278121VariableDFParameterEstimateStandardError\:ValuePr>|t|y=b+b甲(x)+b中(x)=2.07222 +0.1195x(x—5)+0.01528x(3x2—30x+379)将X=2乙-77代入上式得所求多项式回归方程:y=304.5489-14.79452z+0.18336z23解:本题属于一次回归的正交设计采用二水平,做变换:X1=土辿,x2=土史,、3=土奏1,x4=土史10 5 25 10试验方案试验号x1x2x3x4y'111115.4211-1-13.431-11-10.84-1-1-110.35-111-1-2.56-11-11-17-1-111-3.38-1-1-1-1-3.6程序如下:dataE1;inputx1-x4y;cards;11115.411-1-13.41-11-10.81-1-110.3-111-1-2.5-11-11-1-1-111-3.3-1-1-1-1-3.6;procregdata=E1;modely=x1-x4;run;TheSASSystem22:08Wednesday,November14,2010 1TheREGProcedureModel:MODEL1DependentVariable:yAnalysisofVarianceSourceDFSumofSquaresMeanSquareFValuePr>FModel468.4850017.1212512.730.0317Error34.033751.34458CorrectedTotal 772.51875RootMSE1.15956R-Square0.9444DependentMean-0.06250AdjR-Sq0.8702CoeffVar-1855.29872ParameterEstimatesVariableDFParameterEstimateStandardErrortValuePr>ItlIntercept1-0.062500.40997-0.150.8885xl12.537500.409976.190.0085x211.387500.409973.380.0430x310.162500.409970.400.7183x410.412500.409971.010.3885y"=-0.0625+2.5370x1+1.38750x2+0.16250x3+0.41250x4即y—87=-0.0625+2.5370"—310+1.38750七2—25+0.16250七3—225+0.41250'4—9010 5 25 10y=—3.822+0.2537z1+0.2775z2+0.0065z3+0.041250z4第八章:均匀设计1解:安排方案如下:^素试验号^^\_Z1Z2Z312.06002423.48002234.85002046.270018第九章:单纯形优化设计9-1解:(1)反射点E的坐标(5,10,0)3(2)(i)扩大,a>1(ii)内收缩,a<0(iii)收缩,0<a<1(3) 新单纯形各点坐标B(2,4,3),A’(1.5,3,3.5),C’(2.5,2.5,2.5),D”(3,3.5,2)。
第十章:析因试验设计10-4解:分析结果如下:ANOVAforY1SourceMasterModelPredictiveModelDF88MSFPr>FDF88MSFPr>FXIX2X3X1*X1X1*X2X1*X3X2*X2X2*X3X3*X310.4050.781255.6112534.441632.4926.0131.68006109.202538.50160.4050.781255.6112534.441632.4926.0131.68006109.202538.50160.3959590.763815.48598733.6727431.7647125.4293630.97285106.764737.642110.5568110.4221230.0661970.0021430.0024380.0039580.0025780.0001460.0016710.4050.781255.6112534.441632.4926.0131.68006109.202538.50160.4050.781255.6112534.441632.4926.0131.68006109.202538.50160.3959590.763815.48598733.6727431.7647125.4293630.97285106.764737.642110.5568110.4221230.0661970.0021430.0024380.0039580.0025780.0001460.00167ModelErrorTotal265.20985.114167270.32429.467761.02283328.809930.000874265.20985.114167270.32429.467761.02283328.809930.000874FitStatisticsforY1MasterMode1PredictiveMode1MeanR-squareAdj.R-squareRMSE 1.CV 3.32.5298.11需94.70^01135210993932.5298.11^94.70^1.0113523.109939AliasStructureforY1MasterModelPredictiveModelNoeffect;jaliased.Noeffectsaliased.PredictiveModelforY1Pnrl^rlIajuIsf-11、■EffectEstimatesforY1TermMasterModelPredictiveModelEstimateStdErrtPr>|t|EstimateStdErrtPr>|t|XI-0.2250.357567-0.629250.556811-0.2250.357567-0.629250.556811X2-0.31250.357567-0.873960.422123-0.31250.357567-0.873960.422123X3-0.83750.357567-2.342220.066197-0.83750.357567-2.342220.066197-3.0541670.526324-5.802820.002143-3.0541670.526324-5.802820.002143-2.050.505676-5.636020.002438-2.850.505676-5.636020.002438-2.550.505676-5.042750.003958-2.550.505676-5.042750.003958心观-2.9291670.526324-5.565330.002578-2.9291670.526324-5.565330.002578海楸3-5.2250.505676-10.33270.000146-5.2250.505676-10.33270.000146X3楸3-3.2291670.526324-6.135320.00167-3.2291670.526324-6.135320.00167经分析可知,在a=0.05的情况下,一次项均不显著,二次项、交互项均是显著的。第十二章:多指标综合评价概论12-4解:记P(U<Ua)=«,其中优等品10件,一等品30件,二等品40件,20件三等品,所有标准分依次是—U;-U;U;U,查标准正态表得到标准分依次是:-1.64,-0.67,0.25;1.28;第十三章:主成分分析法和因子分析法ppt第一题解:利用SAS软件进行主成分分析主要输出结果如下:EigenvalueDifferenceProportionCumulative3.104912520.207470900.38810.38812.897441621.967226080.36220.75030.930215550.288093290.11630.06660.642122260.338038130.08030.94680.304084130.217486370.03800.98480.006597760.054413330.01080.99570.032184380.028742610.00400.99870.002441780.00031.000014:39Monday,December5,2010EigenvaluesoftheCorrelationMatrix12345678ThePRINCOMPProcedureEigenvectorsPrinlPrin2Prin3Prin4Prin5Prin6Prin7Prin8xl0.4766500.2959910.1041900.045303-.184219-.0658540.7576190.245000x20.4728080.2778940.162883-.1744310.305448-.048451-.5184130.527105x30.4230450.3779510.1562550.0506700.0174750.099048-.174045-.780540x4-.2128930.451408-.0085440.516086-.5394070.287855-.2494270.220126x5-.3884600.3308450.321133-.1894160.4488980.5822880.2328690.030623x6-.3524270.4027370.1451440.2792570.316035-.7135710.056436-.042355x70.214835-.3774150.1404590.7581690.4182010.1935870.0528420.041160x80.0550340.272736-.8911620.0718550.3222010.1221680.067111-.003300要求累积方差贡献率N85%,所以取前三个作为主成分即可,Prin1=0.476650x1+0.472808x2+0.423845x3...+0.055034x8Prin2=0.295991x1+0.277894x2+0.377951x3...+0.272736x8Prin3=0.104190x1+0.162983x2+0.156255x3...-0.891162x8第一主成分,各项数值彼此相差不大,表示各单项指标对综合的经济效益起着相当的作用,因此第一主成分可以理解为全面能力综合指标;第二主成分,指标x4的系数明显比其它的指示系数大,而且系数为正,表明第二主成分主要由x4决定;第三主成分,指标x8的系数明显比其它的指示系数大,而且系数为负的,表明第三主成分主要是反应与x8相反的指标。
November23,2010 8排序结果为如下:November23,2010 8ObsnamePrinlPrin2Prin3prin123rankprin12314(?m22.789091.413571.12043i.99053'l31口避纫)2.118340.20704-0.010271.03463241.106820.658430.356070.81879351.12000-0.277290.303220.42604460.88156-0.528740.072080.18359571(若耄)-1.052181.276860.659050.1506668-3.372333.706520.108860.053117913位教艺术用品)0.413730.44054-2.92320-0.022220100.37240-0.77274-0.43574-0.214569116(&)-0.93583-1.38400-0.20544-1.0252910122Si)-1.33533-2.164340.45585-1.4410411133(麒)-2.10809-2.575850.49910-1.9542512TheSASSystem20:40Friday,第十四章:模糊综合评价14-1解:单指标评价结果归一化处理得:0414一999151一—0—399142R=——0399210——033180——099权向量a=(0.300.250.150.200.10)a・R=(0.1333,0.4833,0.2223,0.1611)根据最大隶属度原则0.48333所对应的评语为一般。根据秩加权平均原则,用1、2、3、4分别代表差、一般、良好、优,A=1X0.1611+2X0.2223+3X0.4833+4X0.1333=2.588得A=2.2588,即位于一般与良好之间,且该食品一般偏良。100X0.1611+80X0.2223+60X0.4833+40X0.1333=68.2245评分值为:P=68.2245分。第十五章:聚类分析与判别分析
15-3解:用动态聚类的方法来分类,结果如下:TheFASTCLUSProcedureInitialSeedsClusterxlqx3x4x5x6114-0000000013.000000002810000000014-0000000022.0000000039.00000000220_(MW(W016.000000002.0000000038.OOOOOOOO的.3000000037.000000009-0000000020.0000000023.00000000ClusterListing如ClusterSeed:103463212.0539312.1323430163676619.9145120S110L6D8S9113173710197364第一类:学生编号{1,2,3,5,6,8,9,10};第二类:学生编号{7};第三类:学生编号{4}。15-6解:PosteriorProbabi1ityofMembershipinspeciesClaaaifiedFromintoyearspeciesspecies1231951110.98040.00280.0168185223卅0.00020.82210.6777185821卅0.67880.18270.12751954220.00400.59610.39991955220.10370.80650.08981956330.00060.12410.87531857110.88890.00060.01061858880.07140.16580.76271858880.00120.08720.8015196032卅0.00010.62700.37301961330.11350.41560.47091962110.88510.09130.02361868220.00010.81510.08481864110.84470.01640.08881965110.81630.07700.10661966110.99370.00060.00571967110.99070.00220.00711968330.06900.02530.9056186882卅0.18240.55780.26081870880.04120.81640.64241971330.03610.05130.91261972330.06200.02340.91461973330.01150.25870.72971874220.01520.50580.47801875220.00010.68850.81641976330.00060.09800.90141977110.57740.03440.3882197823卅0.00390.17860.81751979330.00010.40200.5979
NumberofObservationsandPercentClassifiedintospeciesFromspecies123Total1100.000.000.00100.00212.5062.5025.00100.0030.0015.3884.6213100.00Total31.0324.141344.8329100.00Priors0.275860.275860.44828123TotalRate0.00000.37500.15380.1724Priors0.27590.27590.4483ErrorCountEstimatesforspecies第十六章:典型相关分析ppt第一题解:对44名学生期末成绩开卷和并卷进行典型相关分析,结果如下:5,2010 1ionsinthearezeroDFPr>F780.00225,2010 1ionsinthearezeroDFPr>F780.0022400.8312TheCANCORRProcedureCanonicaICorrelationAnalysisCanonica1CorrelationAdjustedCanonica1CorrelationApproximateStandardEr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版技术开发与许可使用合同3篇
- 2024年度技术服务合同大数据分析服务3篇
- 2024版艺术品借展合同与保险责任
- 二零二四年度任城区人才公寓租住合同变更条款3篇
- 二零二四年度技术开发合同(2024版)2篇
- 二零二四年度科技公司无人机研发生产合同3篇
- 艾滋病知识宣传和预防
- 2024年度二手艺术品买卖合同2篇
- 2024年度版权许可合同:音乐作品版权授权使用与分成协议3篇
- 2024年度智能家居系统购买安装合同
- 湖北省武汉市新洲区2021上半年社区专职工作者《公共基础知识》试题
- 福建省龙岩市上杭县城区三校2024-2025学年九年级上学期期中考试数学试题
- 小儿惊厥的护理幻灯
- 高中英语必背3500单词表(完整版)
- 2024至2030年中国领先型机组式凹版印刷机数据监测研究报告
- 生态农业综合开发项目可行性研究报告
- 2024年直播电商运营及推广职业技能知识考试题(附含答案)
- 铸造机械市场分析及投资价值研究报告
- 内蒙古自治区锡林郭勒盟2024-2025学年高一上学期11月期中 生物试题(含答案)
- 关于健康的课件图片
- 2024年度上海市高校教师资格证之高等教育心理学题库与答案
评论
0/150
提交评论