有关八年级数学教案范文集合7篇_第1页
有关八年级数学教案范文集合7篇_第2页
有关八年级数学教案范文集合7篇_第3页
有关八年级数学教案范文集合7篇_第4页
有关八年级数学教案范文集合7篇_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页共页有关八年级数学教案范文集合7篇有关八年级数学教案范文集合7篇八年级数学教案篇1教学目的一、教学知识点:1.旋转的定义.2.旋转的根本性质.二、才能训练要求:1.通过详细实例认识旋转,理解旋转的根本涵义.2.探究旋转的根本性质,理解旋转前后两个图形对应点到旋转中心的间隔相等,对应点与旋转中心的连线所成的角彼此相等的性质.三、情感与价值观要求1.经历对生活中与旋转现象有关的图形进展观察、分析^p、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,开展初步的审美才能,增强对图形欣赏的意识.2.通过学习使学生能用数学的目光对待生活中的有关问题,进一步开展学生的数学观.教学重点:旋转的根本性质.教学难点:探究旋转的根本性质.教学方法:1、遵循学生是学习的主人的原那么,在为学生创造大量实例的根底上,引导学生自主考虑、交流、讨论、归纳、学习。2、采用多媒体课件辅助教学。教学过程:一.巧设情景问题,引入课题日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景).〔1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?1.在这些转动的现象中,它们都是绕着一个点转动的.2.每个物体的转动都是向同一个方向转动.3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来讨论生活中的旋转.二.讲授新课在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按一样的方式转动一样的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.议一议:〔课本67页〕答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按一样的方向旋转一样的角度,所以∠AOD与∠BOE是相等的.(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A挪动到点D的位置,点B挪动到点E的位置,点C挪动到点F的位置,那么点A与点D、点B与点E、点C与点F就是对应点.从刚刚大家得出的结论中,能否总结出旋转的性质呢?答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.由此我们得到了旋转的根本性质:经过旋转,图形上的每一点都绕旋转中心沿一样方向转动了一样的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的间隔相等.[例1]〔课本68页例1〕[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着外表盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.解:〔见课本68页〕书上68页做一做三.课堂练习课本P69随堂练习.1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.四.课时小结五.课后作业:课本P69习题3.41、2、3.六.活动与探究1.分析^p图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.结果:旋转现象为:整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析^p图形,找出关系.结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、270°.前后的图形共同组成的.整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.板书设计:略教学反思:本节课仍然是图形的根本变换。借助多媒体教学直观生动形象。学生一般都能在老师的指导下掌握。也在培养学生的空间想象才能。八年级数学教案篇2教学指导思想与理论根据《根底教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、老师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和开展提供丰富多彩的教育环境和有力的学习工具。”老师运用现代多媒体信息技术对教学活动进展创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分提醒数学概念的形成与开展,数学思维的过程和本质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。教学内容分析^p:本节课内容是学生在小学阶段初步理解特殊四边形以及学过《三角形》这章的根底上进展的,在知识构造上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学表达出直观、课容量大、容易承受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章详细内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论根底,在该章占有非常重要的地位。学生情况分析^p:本班经历了一年多课改理论,学生对运用现代多媒体信息技术的教学方式有浓重的兴趣,能运用《几何画板》这一工具进展简单的操作,形成自主探究和合作交流的学风,从而乐于在老师的指导下主动与同学探究、发现、归纳、经历数学知识于理论的过程。教学方式与教学手段说明:本节课充分利用现有的先进教学设备〔两名学生一台电脑〕,利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经历出发,让学生亲身经历数学知识的形成并进展解释与应用过程。组员互相配合分别测量、搜集、分析^p、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中老师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维才能、情感态度与价值观等多方面得到开展。知识与技能:1、初步理解特殊四边形性质;2、培养学生自主搜集、描绘和分析^p数据的才能;过程与方法:1、理解特殊四边形性质的形成过程;2、初步理解探究新知识的一些方法;情感与价值观:1、理解特殊四边形在日常生活中的应用;2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;3、初步具有感性认识上升到理性认识的辩证唯物思想。教学环境:多媒体计算机网络教室教学课型:试验探究式教学重点:特殊四边形性质教学难点:特殊四边形性质的发现一、设置情景,提出问题提出问题:知识已生活,又效劳于生活。我们经过校门时,是否注意到电动门的机械工作原理〔老师用几何画板演示〕?1、电动门的网格和结点能组成哪些四边形?2、在开〔关〕门过程中这些四边形是如何变化的?3、你还发现了什么?解决问题:学生猜测:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;当我们学习完本节知识后,其他问题就容易解决了。〔意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。〕二、整体理解,形成系统本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的根底。我们先研究四边形中的特殊与一般的关系。提出问题:1、本章主要研究哪些特殊四边形?2、从哪几方面研究这些特殊四边形?3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?假如没有,为什么?解决问题:学生操作电脑〔用几何画板〕,理解本章研究的主要图形;老师个别指导。1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。〔意图:学生自主观察、分组讨论理解本章知识构造,从而形成系统;通过假设、猜测、推理、论证、否认假设获得新知识〕三、个体研究、总结性质1、平行四边形性质提出问题:在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。解决问题:老师引导学生拖动B点〔学生操作电脑〕,改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。在图形变化过程中,〔1〕对边相等;〔2〕对角相等;〔3〕通过AO=CO、BO=DO,可得对角线互相平分;〔4〕通过邻角互补,可得对边平行;〔5〕内外角和都等于360度;〔6〕邻角互补;……指导学生填表:平行四边形性质矩形性质正方形性质菱形性质梯形性质等腰梯形性质直角梯形性质〔既属于平行四边形性质又属于矩形性质可以画箭头〕按照平行四边形性质的探究思路,分别研究:2、矩形性质;3、菱形性质;4、正方形性质;5、梯形性质;6、等腰梯形性质;7、直角梯形的性质。〔意图:学生运用电脑自主搜集、描绘、分析^p数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探究的乐趣。〕老师总结:〔意图:掌握画箭头的方法,使学生理解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。〕四、联络生活,解决问题解决问题:学生操作电脑,观察图形、分组讨论,老师个别指导。学生在分别演示开〔关〕门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。四边形具有不稳定性,而三角形没有这个特点……〔意图:使学生体会到数学于生活、又效劳于生活,更重要的是培养学生应用知识解决实际问题的才能,体会成功后的喜悦。〕五、小结1.研究问题从整体到部分的方法;2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。六、作业1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。2.观察实际生活中的电动门,在开〔关〕门过程中特殊四边形的变化。学习效果评价针对教学内容、学生特点及设计方案,预计以下学习效果:利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析^p、整理数据并总结其性质,培养学生搜集、描绘和分析^p数据的才能,并到达初步理解特殊四边形性质的目的。在问题引入、理解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物思想。学生演示开〔关〕门过程中,理解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;由于个体差异,针对教学目的难以到达的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目的得以实现。八年级数学教案篇3一、知识与技能1.从现实情境和已有的知识、经历出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的区分唯物观点.2、经历抽象反比例函数概念的过程,开展学生的抽象思维才能,进步数学化意识.三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,进步学生的学习数学的兴趣.2、通过分组讨论,培养学生合作交流意识和探究精神.教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:以下问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t〔单位:h〕随该列车平均速度v〔单位:km/h〕的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)北京市的总面积为1.68×104平方千米,人均占有土地面积S〔单位:平方千米/人〕随全市人口n〔单位:人〕的变化而变化.师生行为:先让学生进展小组合作交流,再进展全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,理解所讨论的函数的表达形式.老师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否理解所讨论的函数表达形式,形成反比例函数概念的详细形象.分析^p及解答:〔1〕;〔2〕;〔3〕其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数.二、联络生活,丰富联想活动2以下问题中,变量间的对应关系可用这样的函数式表示?〔1〕一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;〔2〕某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;〔3〕一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立考虑,在进展全班交流.老师操作课件,提出问题,关注学生考虑的过程,在此活动中,老师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比拟深入地领会函数、反比例函数的概念.分析^p及解答:〔1〕;〔2〕;〔3〕概念:假如两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进展独立考虑,再进展全班交流.老师提出问题,关注学生考虑.此活动中老师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:以下哪个等式中的y是x的反比例函数?问题2:y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立考虑,然后小组合作交流.老师巡视,查看学生完成的情况,并给予及时引导.在此活动中老师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析^p及解答:1、只有xy=123是反比例函数.2、分析^p:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.解:〔1〕设,因为x=2时,y=6,所以有解得k=12因此〔2〕把x=4代入,得三、稳固进步活动51、y是x的反比例函数,并且当x=3时,y=8.〔1〕写出y与x之间的函数关系式.〔2〕求y=2时x的值.2、y是x的反比例函数,下表给出了x与y的一些值:〔1〕写出这个反比例函数的表达式;〔2〕根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,老师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经历和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学目光,审视某些实际现象.八年级数学教案篇4一、教学目的1.使学生进一步理解自变量的取值范围和函数值的意义.2.使学生会用描点法画出简单函数的图象.二、教学重点、难点重点:1.理解与认识函数图象的意义.2.培养学生的`看图、识图才能.难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.三、教学过程复习提问1.函数有哪三种表示法?(答:解析法、列表法、图象法.)2.结合函数y=x的图象,说明什么是函数的图象?3.说出以下各点所在象限或坐标轴:新课1.画函数图象的方法是描点法.其步骤:(1)列表.要注意适中选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比方画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.(3)用光滑曲线连线.根据函数解析式比方y=3x,我们把所描的两个点(0,0),(3,9)连成直线.一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.小结本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.练习①选用课本练习(前一节已作:列表、描点,本节要求连线)②补充题:画出函数y=5x-2的图象.作业选用课本习题.四、教学注意问题1.注意浸透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.2.注意充分调动学生自己动手画图的积极性.3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的才能.八年级数学教案篇5一、教学目的:1、会根据频数分布表求加权平均数,从而解决一些实际问题2、会用计算器求加权平均数的值3、会运用样本估计总体的方法来获得对总体的认识二、重点、难点:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数三、教学过程:1、复习组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=〔上限+上限〕/2.因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中假如数据分布较为均匀时,比方教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,假设分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=0.而用组中值51去乘以频数20恰好为1020≈0,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比拟合理的,而且这样做的最大好处是简化了计算量.为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.2、教材P140探究栏目的意图①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比方组、组中值及频数在表中的详细意义.3、教材P140的考虑的意图.①、使学生通过考虑这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.②、帮助学生理解表中所表达出来的信息,培养学生分析^p数据的才能.4、利用计算器计算平均值这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显比照.一那么由于学校中学生使用计算器不同,其操作过程有差异亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.5、运用样本估计总体要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.八年级数学教案篇6学习目的1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。2、由坐标的变化探究新旧图形之间的变化。重点1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。2、根据轴对称图形的特点,轴一边的图形或坐标确定另一边的图形或坐标。难点体会极坐标和直角坐标思想,并能解决一些简单的问题学习过程(导入、探究新知、即时练习、小结、达标检测、作业)第一课时学习过程:一、旧知回忆:1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。2、坐标平面内点的坐标的表示方法____________。3、各象限点的坐标的特征:二、新知检索:1、在方格纸上描出以下各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形三、典例分析^p例1、(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析^p所得图形与原来图形相比有什么变化?假如纵坐标保持不变,横坐标分别减2呢?(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析^p所得图形与原来图形相比有什么变化?假如横坐标保持不变,纵坐标减2呢?例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析^p所得图形与原来图形相比有什么变化?(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析^p所得图形与原来图形相比有什么变化?四、题组训练1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?(2)纵、横分别加3呢?(3)纵、横分别变成原来的2倍呢?归纳:图形坐标变化规律1、平移规律:2、图形伸长与压缩:第二课时一、旧知回忆:1、轴对称图形定义:假如一个图形沿着对折后两部分完全重合,这样的图形叫做轴对称图形。中心对称图形定义:在同一平面内,假如把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形二、新知检索:1、如图,左边的鱼与右边的鱼关于y轴对称。1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?2、各个对应顶点的坐标有怎样的关系?3、假如将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?三、典例分析^p,如下图,1、右图的鱼是通过什么样的变换得到左图的鱼的。2、假如将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。3、假如将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系四、题组练习1、将坐标作如下变化时,图形将怎样变化?①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。4、描出以下图中枫叶图案关于x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论