




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
机器学习研究入门指南浙江大学蔡登提纲一、需要掌握的先决知识、技能二、入门学习资料三、如何学习四、找自己感兴趣的问题,进一步深入
五、跟踪学术前沿,发表高水平论文PrerequisiteKnowledgeMathematicalanalysisLinearalgebraProbabilitytheoryBayestheoremEigenvectorandeigenvalueMatrixrank,Positivedefinitematrix……AlgorithmdesignC,C++入门学习资料:机器学习R.Duda,P.Hart&D.Stork,PatternClassification(2nded.),Wiley,2000KevinMurphy,MachineLearning:AProbabilisticPerspective,TheMITPress,2012C.M.Bishop,PatternRecognitionandMachineLearning,Springer,2006
T.Hastie,R.Tibshirani&J.Friedman,TheElementsofStatisticalLearning:DataMining,Inference,andPrediction(2nded.),Springer,2009
入门学习资料:OptimizationStephenBoyd,LievenVandenberghe,ConvexOptimization,CambridgeUniversityPress,2004
入门学习资料:具体应用ComputerVisionDavidForsyth,JeanPonce,ComputerVision:AModernApproach(2ndEdition),PrenticeHall,2011RichardSzeliski,ComputerVision:AlgorithmsandApplications,Springer,2010
InformationRetrievalChristopherD.Manninget.al.,IntroductiontoInformationRetrieval,CambridgeUniversityPress,2008
NaturalLanguageProcessingChristopherD.Manninget.al.,FoundationsofStatisticalNaturalLanguageProcessing,MITPress,1999
入门学习资料下载地址,百度网盘共享链接:密码:e3vi除了上面提到的书,还有许多CS方面的如何学习掌握机器学习基本概念看书国外很多课程(包括网上课程和非网上课程,要做assignments),要做assignments针对一个问题,深入学习机器学习中有很多问题,譬如Classification,Clustering,Dimensionalityreduction,Matrixfactorization,Featureselection,Metriclearning,Activelearning…一个问题,会有很多方法解决,选择一些经典的/最新的方法,下载标准数据集,做实验比较,分析实验结果,写report这个过程,就是做研究的过程,和真正做研究写论文的唯一区别就是这里没有你自己提出的方法。整个过程要按照写论文的标准要求自己最后report也要写成论文的格式。需要你自己去下载相关领域的论文,看别人是怎么写的。如何学习深入学习的过程中,需要掌握Matlab,做实验一般都需要,自己去google教程,看看别人写的代码,通过读别人代码,写自己代码进行学习有很多机器学习matlab代码掌握Latex写论文。如果你以后准备念Ph.D,那Latex就必须会。上一个slide提到的report,就要用latex写。找自己感兴趣的问题,进一步深入有了机器学习的基本知识/技能之后,可以结合实际问题,尝试解决实际问题,一开始,这个问题可以是很小的问题,甚至是可以别人已经解决的问题。解决实际问题,光有机器学习的只是不够,还需要有领域相关的只是,譬如计算机视觉、文本处理、自然语言处理等,所以还要看相关的书下面几页slide,列了一些问题实际问题计算机视觉(ComputerVision)相关ImageSearchDetection,tracking,recognitionFacelandmarkImagerecovery文本处理(InformationRetrieval)ObjectDetection(目标检测)What’sobjectdetection?OnewayofdetectionFaceClassifierDetectionbydoingslidingwindowsearchCutmanysmallimagesfrombigoneAppendingaclassifierforeachsmallimageGetdetectionresultTwoClassesofObjectDetectionSpecificObjectDetectionFaceDetectionPedestrianDetectionCarDetection…GeneralObjectDetectionPascalVOCImageNetSpecificObjectDetectionFaceDetection(Youcanfindpaperlinkinfddbwebsite)Faceness,ICCV2015,Best,TangXiaoou组
upsamplingfeatrue->rankingwindows->detectCassacdeCNN,CVPR2015,adobe
CNNCassacdeFromsmalltobigfiliterwindowsJointCascade,ECCV2014DetectionandalignmentinthesamecascadeframeworkHeadHunter,ECCV2014
Cascade,dividetrainofmodelsby23poses,thanjoinallMultiresHPM,CVPR2014Manageocclusionintrain.CCF,ICCV2015PertrainCNNtogenrentefeature->detectDenseBox
SpecificObjectDetectionFaceDetectionDatasetFDDB(FaceDetectionDataSetandBenchmark)2845imageswithatotalof5171faces
AFW207imageswith337face
AFLW25kannotatedfaces
Baiduyun:CelebA(CelebFacesAttributesDataset)202,599
numberof
faceimages
Baiduyun:NonefaceimagefornegativesamplePacalvocnonefaceclass
SpecificObjectDetectionPedestrianDetectionSurvey:TenYearsofPedestrianDetection,WhatHaveWeLearned
Pedestriandetectionat100framespersecond
Filteredchannelfeaturesforpedestriandetection
SpecificObjectDetectionPedestrianDetectionDatasetINRIA:ETH:TUD-Brussels:Daimler:Caltech-USA:KITTI'spage(car,pedestrian,etc.):SpecificObjectDetectionCarDetectionDenseBox
CarDetectionDatasetKITTI'spage(car,pedestrian,etc.):UIUC:GeneralObjectDetectionSurvey:Whatmakesforeffectivedetectionproposals?
EdgeBoxes:LocatingObjectProposalsfromEdges
FasterR-CNN
Dataset:Imagenet:
PASCALVOC:
SourceCode行人100帧的代码
IntegralChannelFeatures以及特征估计的提出者主页,是后来行人100帧的奠基,他们是用Matlab代码的。EdgeBoxes
Faster-RCNN
FaceLandmarkFaceLandmarksarealsocalledfacialfeaturepointswhichareoftenreferredtosomecriticalpointsofaface,suchaseyecorners,mouthcornersetc.ObjectiveGivenanimageDetectfacesintheimagePredictlandmarksofeachfaceObjectiveMethodsPopularMethods:Regression-basedModelsCoarse-to-fineModelsDeepLearningModelsTraditionalMethods:ConstrainedLocalModelActiveAppearanceModelRegression-basedModelsCVPR2014FaceAlignmentat3000fpsviaregressinglocalbinaryfeaturesCVPR2014OnemillisecondfacealignmentwithanensembleofregressiontreesCVPR2014RobustfacelandmarkestimationunderocclusionCVPR2015FaceAlignmentbyCoarse-to-fineshapesearchingCVPR2015workshop,TowardsrobustcascaderegressionforfacealignmentinthewildCVPR2015FaceAlignmentusingCascadeGaussianProcessRegressionTreesCVPR2015Project-OutCascadedRegressionwithanapplicationtoFaceAlignmentCoarse-to-fineModelsCVPR2013DeepConvolutionNetworkCascadeforFacialPointDetectionECCV2014Coarse-to-fineautoencodernetworksforreal-timefacealignmentCVPR2015FaceAlignmentbyCoarse-to-fineshapesearchingDeepLearningModelsCVPR2013DeepConvolutionNetworkCascadeforFacialPointDetectionECCV2014Coarse-to-fineautoencodernetworksforreal-timefacealignmentCVPR2014FacialLandmarkDetectionbyDeepLearningMulti-taskLearningTPAMI2015LearningDeepRepresentationforFaceAlignmentwithAuxiliaryAttributesAvailableCodesFaceAlignmentbyExplicitShapeRegression[C++]SupervisedDescentMethod(SDM)forFaceAlignment[Matlab]Facealignmentat3000fps[Matlab][C++]AvailableCodesOneMillisecondFaceAlignmentwithanEnsembleofRegressionTrees[C++]codeisavailableindlibC++library.FaceAlignmentbyCoarse-to-FineShapeSearching[Matlab]DeepConvolutionalNetworkCascadeforFacialPointDetection[Matlab]justexecutablefile,norealusefulcode,[Caffe]CLandmark(comesfromflandmark)[C++]FacialLandmarkContest&DatasetsIBUGContest()Datasets:LFPW,AFW,HELEN,IBUG,andXM2VTSDeepLearningFaceAttributesintheWild()Large-scaleCelebFacesAttributes(CelebA)Dataset:Morethan
200K
faceimagesEachwith
40attributes
annotationsProblemsBuildatextsearchengineBuildaimagesearchengineObjectdetection,tracking,recognitionObjectdetection,tracking,recognitionusing3DcameraFacedetection,facerecognitionHumandetection,humantrackingmendsystemImagerecoveryBuildatextsearchengineBasicknowledgeonInformationRetrievalTextsearchengine:CrawlerExtractdatafromthewebpageBuildindexServingtheserviceBasicCrawlerOperationsAwebcrawler,robotorspiderAprogramthatiscapableofiterativelyandautomaticallyBeginwithknown“seed”URLsFetchandparsethemExtractURLstheypointtoPlacetheextractedURLsonaqueueFetcheachURLonthequeueandrepeatStoringthescrapeditem34CrawlerScrapy
AfastandpowerfulscrapingandwebcrawlingframeworkEasilyextensible,portableandpythonDocument:
Opensourcejobqueues
Python-RQ
Redis
ZeroMQ
ExtractDatafromtheHTMLSourceHTMLhasthestructureofaDOM(DocumentObjectModel)treeUnfortunatelyactualHTMLisoftenincorrectExtractdatafromtheHTMLBeautifulSouplxmlSelectingnodesinXMLXPathStoringtheScrapedItemFileJSONformat
Pickleformat
DatabaseSQLMySQLSQLiteKey-ValueRedisMongoDBWordsegmentationandIndexingChinesewordsegmentationJieba
NLPIR
IndexLuceneXapianSphinxmendersystemmenderSystemsaresoftwaretoolsandtechniquesprovidingsuggestionsforitemstobeofusetoauser.Thesuggestionsrelatetovariousdecision-makingprocesses,suchaswhatitemstobuy,whatmusictolistento,orwhatonlinenewstoread.Methods:Content-basedfilteringCollaborativefilteringmendersystemPaperKantorPB,RokachL,RicciF,etal.mendersystemshandbook[M].Springer,2011.KorenY,BellR,VolinskyC.Matrixfactorizationtechniquesformendersystems[J].Computer,2009,42(8):30-37.ContestKDDCupNetflixPrizeConferences&JournalsSIGIR,SIGKDD,IEEETKDEBuildaimagesearchengineBasicknowledgeonImageProcessingExtractfeaturesforimagesBuildindex(invertedindexnolongerworks)ImagesearchengineforZhejiangUniversityObjectdetection,tracking,recognitionBasicknowledgeonComputerVisionDemoModelImageUserImageChangeFaceResultWorkflowFaceDetectionFaceLandmarkSkinAdjustmentAlignmentbyUserFaceLandmarkRelatedworksZhou,Erjin,etal."ExtensiveFacialLandmarkLocalizationwithCoarse-to-FineConvolutionalNetworkCascade."ComputerVisionWorkshops(ICCVW),2013IEEEInternationalConferenceon.IEEE,2013.D.Chen,S.Ren,Y.Wei,X.Cao,J.Sun.JointCascadeFaceDetectionandAlignment.ECCV2014.Robustfacelandmarkestimationunderocclusion.X.P.Burgos-Artizzu,P.PeronaandP.Dollár.ICCV2013.DatasetandBenchmarkAFLW:300-W:COFW:SkinAdjustmentRelatedWorksDigitalImageProcessing:Reinhard,Erik,etal."Colortransferbetweenimages."IEEEComputergraphicsandapplications21.5(2001):34-41.Objectdetection,tracking,recognitionusing3DcameraBasicknowledgeonComputerVisionRGB-DSensorsKinect:Kinectfor360&KinectforWindowsPrimeSense:PrimeSenseSensor&ASUSXtionProLiveIntelRGB&DepthVideoDemoDriverWindowkinectSDK
Freenect
OpenNI
BasicComputerVision:Cameracoordinatetransformation.Imagefeature.Imageprocessing.OpenCV..GPUParallelComputing:CudaOpenCLDeepLearning:CNNReferenceJafari,O.H.;Mitzel,D.;Leibe,B.,"Real-timeRGB-Dbasedpeopledetectionandtrackingformobilerobotsandhead-worncameras,"RoboticsandAutomation(ICRA),2014Berclaz,J.,Fleuret,F.,Turetken,E.,&Fua,P.(2011).Multipleobjecttrackingusingk-shortestpathsoptimization.ImageRecoveryBackground55MatrixCompletionPredictingtheuserbehaviorinthemendersystemRecoveringthemissinginformationofpicturesFoundationofMathematics56MatrixTheory:MatrixAnalysis:RogerA.Horn,CharlesR.JohnsonMatrixComputation:GeneH.Golub,CharlesF.VanLoanFoundationofMathematics57ProbabilityTheoryAProbabilityTheoryofPatternRecognition:LucDevroye,LszlGyoerfi,GaborLugosiProbabilityandStatistics:MorrisH.DeGroot,MarkJ.SchervishFoundationofMathematics58OptimizationTheoryConvexOptimization:LucDevroye,StephenBoyd,
LievenVandenbergheConvexAnalysisandNonlinearOptimization:TheoryandExamples:JonathanM.Borwein,AdrianS.LewisCompressedSensing59Compressedsensingisa
signalprocessing
techniqueforefficientlyacquiringandreconstructinga
signal,byfindingsolutionsto
underdeterminedlinearsystems.NearOptimalSignalRecoveryFromRandomProjections:UniversalEncodingStrategies?AnintroductiontocompressivesamplingTheoryandApplicationsofCompressedSensingRobustuncertaintyprinciples:ExactsignalreconstructionfromhighlypletefrequencyinformationMatrixCompletion60Thekeyideaofmatrixcompletionisthatalowrankandincoherentmatrixwithmissingvaluecanbeperfectlyreconstructedsuingaconvexoptimizationproblemwiththeoreticalguarantee.Thepowerofconvexrelaxation:Near-optimalmatrixcompletion,E.J.Candes,T.Tao,2009MatrixCompletionfroma
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮企业品牌及门店使用权转让协议
- 菜鸟驿站网点使用权及业务运营权转让协议
- 厂房拆迁补偿与环保设施配套合同
- 举办入团活动方案
- 学校疫情宿舍管理制度
- 厂区骑车停放管理制度
- 医药公司数据管理制度
- 学校费用预算管理制度
- 幼儿信息采集管理制度
- 回购交易对手管理制度
- 《江苏省建设工程消防设计审查验收 常见技术难点问题解答 2.0》
- 中医夏季养生知识课件
- 国开电大《儿童心理学》形考任务+大作业
- 中国虚拟运营商行业市场集中度、市场运行态势及未来趋势预测报告(2025版)
- 工厂高空作业施工方案
- 【MOOC】结构力学(下)-湖南大学 中国大学慕课MOOC答案
- 《物业服务企业ESG评价要求》
- 水利工程施工监理规范(SL288-2014)用表填表说明及示例
- 济南大学《特殊教育研究方法》2021-2022学年第一学期期末试卷
- 沟通的艺术学习通超星期末考试答案章节答案2024年
- GB/T 35428-2024医院负压隔离病房环境控制要求
评论
0/150
提交评论