版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率的意义和概率的性质第一页,共五十六页,编辑于2023年,星期日问题提出1.在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?
2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?
联系:概率是频率的稳定值;区别:频率具有随机性,概率是一个确定的数;范围:[0,1].第二页,共五十六页,编辑于2023年,星期日
3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题作出合理解释和正确决策,是我们学习概率的一个基本目的.
第三页,共五十六页,编辑于2023年,星期日概率的意义第四页,共五十六页,编辑于2023年,星期日探究(一):
概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?
“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?
第五页,共五十六页,编辑于2023年,星期日思考3:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?
“两次正面朝上”的频率约为0.25,“两次反面朝上”的频率约为0.25,“一次正面朝上,一次反面朝上”的频率约为0.5.第六页,共五十六页,编辑于2023年,星期日思考4:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.
不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513.第七页,共五十六页,编辑于2023年,星期日思考5:如果某种彩票的中奖概率为
,那么买1000张这种彩票一定能中奖吗?为什么?不一定,理由同上.买1000张这种彩票的中奖概率约为1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能肯定中奖.第八页,共五十六页,编辑于2023年,星期日思考1:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.探究(二):概率思想的实际应用
第九页,共五十六页,编辑于2023年,星期日思考2:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?
这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点.如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为.这是一个小概率事件,几乎不可能发生.第十页,共五十六页,编辑于2023年,星期日如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.第十一页,共五十六页,编辑于2023年,星期日思考3:天气预报是气象专家依据观测到的气象资料和专家们的实际经验,经过分析推断得到的.某地气象局预报说,明天本地降水概率为70%,能否认为明天本地有70%的区域下雨,30%的区域不下雨?你认为应如何理解?
降水概率≠降水区域;明天本地下雨的可能性为70%.第十二页,共五十六页,编辑于2023年,星期日思考4:天气预报说昨天的降水概率为90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?
不能,概率为90%的事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.第十三页,共五十六页,编辑于2023年,星期日思考5:奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆.第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:第十四页,共五十六页,编辑于2023年,星期日
豌豆杂交试验的子二代结果277短茎787长茎茎的高度1850皱皮5474圆形种子的性状2001绿色6022黄色子叶的颜色隐性显性性状你能从这些数据中发现什么规律吗?显性与隐性之比都接近3︰1第十五页,共五十六页,编辑于2023年,星期日孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释.第十六页,共五十六页,编辑于2023年,星期日思考6:在遗传学中有下列原理:(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.(2)用符号YY代表纯黄色豌豆的两个特征,符号yy代表纯绿色豌豆的两个特征.(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:Yy.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为:YY
,Yy,yy.第十七页,共五十六页,编辑于2023年,星期日黄色豌豆(YY,Yy)︰绿色豌豆(yy)≈3︰1
(4)对于豌豆的颜色来说.Y是显性因子,y是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即YY,Yy都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即yy呈绿色.在第二代中YY,Yy,yy出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?第十八页,共五十六页,编辑于2023年,星期日黄色圆粒豌豆和绿色皱粒豌豆的杂交试验分析图解第十九页,共五十六页,编辑于2023年,星期日知识迁移
1为了估计水库中的鱼的尾数,先从水库中捕出2000尾鱼,给每尾鱼作上记号(不影响其存活),然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出500尾鱼,其中有记号的鱼有40尾,试根据上述数据,估计这个水库里鱼的尾数.第二十页,共五十六页,编辑于2023年,星期日
2在足球点球大战中,球的运行只有两种状态,即进球或被扑出.球员射门有6个方向:中下,中上,左下,左上,右下,右上,门将扑球有5种选择:不动.左下,右下,左上,右上.如果①不动可扑出中下和中上两个方向的点球;②左下可扑出左下和中下两个方向的点球;③右下可扑出右下和中下两个方向的点球;④左上可扑出左上方向的点球;⑤右上可扑出右上方向的点球.那么球员应选择哪个方向射门,才能使进球的概率最大?第二十一页,共五十六页,编辑于2023年,星期日小结作业1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.
第二十二页,共五十六页,编辑于2023年,星期日3.1.3概率的基本性质事件的关系和运算概率的几个基本性质第二十三页,共五十六页,编辑于2023年,星期日比如在掷骰子这个试验中:“出现的点数小于或等于3”这个事件中包含了哪些结果呢?①“出现的点数为1”②“出现的点数为2”③“出现的点数为3”这三个结果一.创设情境,引入新课上一节课我们学习了随机事件的概率,举了生活中与概率知识有关的许多实例。今天我们来研究概率的基本性质。在研究性质之前,我们先来研究一下事件之间有什么关系。你能写出在掷骰子的试验中出现的其它事件吗?第二十四页,共五十六页,编辑于2023年,星期日C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};上述事件中有必然事件或不可能事件吗?有的话,哪些是?D1={出现的点数不大于1};D2={出现的点数大于3};D3={出现的点数小于5};E={出现的点数小于7};F={出现的点数大于6};G={出现的点数为偶数};H={出现的点数为奇数};……一.创设情境,引入新课2.若事件C1发生,则还有哪些事件也一定会发生?反过来可以吗?3.上述事件中,哪些事件发生会使得K={出现1
点或5点}也发生?6.在掷骰子实验中事件G和事件H是否一定有一个会发生?5.若只掷一次骰子,则事件C1和事件C2有可能同时发生么?4.上述事件中,哪些事件发生当且仅当事件D2且事件D3同时发生?第二十五页,共五十六页,编辑于2023年,星期日(一)事件的关系和运算:BA如图:例.事件C1={出现1点}发生,则事件H={出现的点数为奇数}也一定会发生,所以注:不可能事件记作,任何事件都包括不可能事件。(1)包含关系一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作二.剖析概念,夯实基础第二十六页,共五十六页,编辑于2023年,星期日(2)相等关系B
A如图:例.事件C1={出现1点}发生,则事件D1={出现的点数不大于1}就一定会发生,反过来也一样,所以C1=D1。一般地,对事件A与事件B,若,那么称事件A与事件B相等,记作A=B。二.剖析概念,夯实基础第二十七页,共五十六页,编辑于2023年,星期日(3)并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A和事件B的并事件(或和事件),记作。B
A如图:例.若事件K={出现1点或5点}发生,则事件C1={出现1点}与事件C5={出现5点}中至少有一个会发生,则二.剖析概念,夯实基础第二十八页,共五十六页,编辑于2023年,星期日(4)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A和事件B的交事件(或积事件)记作B
A如图:例.若事件C4
={出现4点}发生,则事件D2={出现点数大于3}与事件D3={出现点数小于5}同时发生,则二.剖析概念,夯实基础第二十九页,共五十六页,编辑于2023年,星期日(5)互斥事件若为不可能事件(),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生。AB如图:例.因为事件C1={出现1点}与事件C2={出现2点}不可能同时发生,故这两个事件互斥。二.剖析概念,夯实基础第三十页,共五十六页,编辑于2023年,星期日(6)互为对立事件若为不可能事件,为必然事件,那么称事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生。AB如图:例.
事件G={出现的点数为偶数}与事件H={出现的点数为奇数}即为互为对立事件。二.剖析概念,夯实基础第三十一页,共五十六页,编辑于2023年,星期日①互斥事件可以是两个或两个以上事件的关系,而对立事件只针对两个事件而言。②从定义上看,两个互斥事件有可能都不发生,也可能有一个发生,也就是不可能同时发生;而对立事件除了要求这两个事件不同时发生外,还要求这二者之间必须要有一个发生,因此,对立事件是互斥事件,是互斥事件的特殊情况,但互斥事件不一定是对立事件。互斥事件与对立事件的区别:第三十二页,共五十六页,编辑于2023年,星期日集合A与集合B的交为空集事件A与事件B互斥=集合A与集合B的交事件A与事件B的交集合A与集合B的并事件A与事件B的并集合A与集合B相等事件A与事件B相等=集合B包含集合A事件B包含事件A
B集合A的补集事件A的对立事件CUA的子集事件A中的元素试验的可能结果空集不可能事件全集必然事件集合论概率论符号A事件与集合之间的对应关系第三十三页,共五十六页,编辑于2023年,星期日1.概率P(A)的取值范围(1)0≤P(A)≤1.(2)必然事件的概率是1.(3)不可能事件的概率是0.(4)若AB,则P(A)≤P(B)(二)概率的基本性质二.剖析概念,夯实基础第三十四页,共五十六页,编辑于2023年,星期日思考:掷一枚骰子,事件C1={出现1点},事件
C3={出现3点}则事件C1
C3发生的频率与事件C1和事件C3发生的频率之间有什么关系?结论:当事件A与事件B互斥时二.剖析概念,夯实基础第三十五页,共五十六页,编辑于2023年,星期日2.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)若事件A,B为对立事件,则P(B)=1-P(A)3.对立事件的概率公式二.剖析概念,夯实基础第三十六页,共五十六页,编辑于2023年,星期日注意:1.利用上述公式求概率是,首先要确定两事件是否互斥,如果没有这一条件,该公式不能运用。即当两事件不互斥时,应有:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)P(AB)=P(A)+P(B)
-
P()2.上述公式可推广,即如果随机事件A1,A2,……,An中任何两个都是互斥事件,那么有P(A1
A2…An)=P(A1)+P(A2)+…+P(n)一般地,在解决比较复杂的事件的概率问题时,常常把复杂事件分解为几个互斥事件,借助该推广公式解决。第三十七页,共五十六页,编辑于2023年,星期日(1)将一枚硬币抛掷两次,事件A:两次出现正面,事件B:只有一次出现正面.(2)某人射击一次,事件A:中靶,事件
B:射中9环.(3)某人射击一次,事件A:射中环数大于5,事件B:射中环数小于5.(1),(3)为互斥事件三.迁移运用,巩固提高1、判断下列每对事件是否为互斥事件(一)独立思考后回答第三十八页,共五十六页,编辑于2023年,星期日2、某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有一名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.不互斥三.迁移运用,巩固提高互斥不对立不互斥互斥且对立第三十九页,共五十六页,编辑于2023年,星期日3、袋中装有白球3个,黑球4个,从中任取3个,是对立事件的为()①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
A.①B.②
C.③
D.④B三.迁移运用,巩固提高第四十页,共五十六页,编辑于2023年,星期日4.从一批产品中取出三件产品,设A={三件产品全不是次品}B={三件产品全是次品}C={三件产品不全是次品}则下列结论正确的是()A.只有A和C互斥B.只有B与C互斥C.任何两个均互斥D.任何两个均不互斥B三.迁移运用,巩固提高第四十一页,共五十六页,编辑于2023年,星期日5.从装有两个红球和两个黑球的口袋里任取两个球,那么,互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰好有两个黑球D.至少有一个黑球与都是红球C三.迁移运用,巩固提高第四十二页,共五十六页,编辑于2023年,星期日6.如果事件A,B是互斥事件,则下列说法正确的个数有()A.2个B.3个C.4个D.5个①A∪B是必然事件;②A∪B是必然事件;③A与B也一定互斥;④0≤P(A)+P(B)<1;⑤P(A)+P(B)=1;⑥0≤P(A)+P(B)≤1第四十三页,共五十六页,编辑于2023年,星期日6.甲、乙两人下象棋,甲获胜的概率为30%,两人下成和棋的概率为50%,则乙获胜的概率为________,甲不输的概率为________.
80%20%三.迁移运用,巩固提高第四十四页,共五十六页,编辑于2023年,星期日8.某射手射击一次射中,10环、9环、8环、7环的概率分别是0.24、0.28、0.19、
0.16,计算这名射手射击一次1)射中10环或9环的概率;2)至少射中7环的概率.3)射中环数不足8环的概率.三.迁移运用,巩固提高(二)根据题意列清各事件后再求解,完成后自由发言.0.520.870.29第四十五页,共五十六页,编辑于2023年,星期日三.迁移运用,巩固提高9、在一次数学考试中,小明的成绩在90分以上的概率是0.13,在80~89分以内的概率是0.55,在70~79分以内的概率是0.16,在60~69分以内的概率是0.12,求小明成绩在60分以上的概率和小明成绩不及格的概率.第四十六页,共五十六页,编辑于2023年,星期日[解析]
分别记小明成绩在90分以上,在80~89分,在70~79分,在60~69分,60分以下(不及格)为事件A、B、C、D、E,显然它们彼此互斥,故小明成绩在80分以上的概率为P(A∪B)=P(A)+P(B)=0.13+0.55=0.68.小明成绩在60分以上的概率为P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.13+0.55+0.16+0.12=0.96.∴小明成绩不及格的概率为P(E)=1-P(A∪B∪C∪D)=1-0.96=0.04.三.迁移运用,巩固提高第四十七页,共五十六页,编辑于2023年,星期日10、一盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球.求:(1)取出球的颜色是红或黑的概率;(2)取出球的颜色是红或黑或白的概率.三.迁移运用,巩固提高独立思考后,可以小组讨论,尝试用多种方法解题,理清思路,代表发言。第四十八页,共五十六页,编辑于2023年,星期日第四十九页,共五十六页,编辑于2023年,星期日第五十页,共五十六页,编辑于2023年,星期日三.迁移运用,巩固提高第五十一页,共五十六页,编辑于2023年,星期日 练习1袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为1/3,得到黑球或黄球的概率是5/12,得到黄球或绿球的概率也是5/12,试求得到黑球、得到黄球、得到绿球的概率各是多少? 分析:利用方程的思想及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游景点商业运营租赁合同
- 吉林师范大学《旅行社管理》2021-2022学年第一学期期末试卷
- 公共卫生机构病例记录质量控制规范
- 吉林师范大学《创意互动新闻制作》2021-2022学年第一学期期末试卷
- 吉林大学《药剂学Ⅰ》2021-2022学年第一学期期末试卷
- 吉林大学《统一建模语言及工具(双语)》2021-2022学年第一学期期末试卷
- 青蓝工程-师徒结对活动幼儿教育指导发言稿
- 建筑施工合同管理培训方案
- 国际贸易和解协议书
- 2024消防设备维修合同样本
- 三课用色彩画心情课件
- 哈工大研究生课程-高等结构动力学-第四章课件
- 期中家长会二年级数学
- 仁义礼智信五常心态课件
- 国企工期标准化手册!各业态建筑工期要求详解
- 卿平海-以校为本的学校发展规划课件
- 示儿优秀课件
- (质量科)废弃物处理记录
- 2022四年级数学上册1大数的认识第13课时整理和复习教学设计新人教版
- 车床经典知识幻灯片课件
- 土建归档资料全套表格
评论
0/150
提交评论