湖北省各市2016年中考数学锐角三角函数应用题汇编含答案_第1页
湖北省各市2016年中考数学锐角三角函数应用题汇编含答案_第2页
湖北省各市2016年中考数学锐角三角函数应用题汇编含答案_第3页
湖北省各市2016年中考数学锐角三角函数应用题汇编含答案_第4页
湖北省各市2016年中考数学锐角三角函数应用题汇编含答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

/2016XX省各市中考锐角三角函数试题汇编7.〔2016荆州如图.在4×4的正方形方格图形中.小正方形的顶点称为格点.△ABC的顶点都在格点上.则图中∠ABC的余弦值是〔A.2B.C.D.[分析]先根据勾股定理的逆定理判断出△ABC的形状.再由锐角三角函数的定义即可得出结论.[解答]解:∵由图可知.AC2=22+42=20.BC2=12+22=5.AB2=32+42=25.∴△ABC是直角三角形.且∠ACB=90°.∴cos∠ABC==.故选D.[点评]本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.10.〔2016荆州如图.在Rt△AOB中.两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上.将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C.S△ABO=4.tan∠BAO=2.则k的值为〔A.3B.4C.6D.8[分析]先根据S△ABO=4.tan∠BAO=2求出AO、BO的长度.再根据点C为斜边A′B的中点.求出点C的坐标.点C的横纵坐标之积即为k值.[解答]解:设点C坐标为〔x.y.作CD⊥BO′交边BO′于点D.∵tan∠BAO=2.∴=2.∵S△ABO=•AO•BO=4.∴AO=2.BO=4.∵△ABO≌△A′O′B.∴AO=A′0′=2.BO=BO′=4.∵点C为斜边A′B的中点.CD⊥BO′.∴CD=A′0′=1.BD=BO′=2.∴x=BO﹣CD=4﹣1=3.y=BD=2.∴k=x•y=3•2=6.故选C..[点评]本题考查了反比例函数图象上点的坐标特征.解答本题的关键在于读懂题意.作出合适的辅助线.求出点C的坐标.然后根据点C的横纵坐标之积等于k值求解即可.15.〔2016荆州全球最大的关公塑像矗立在荆州古城东门外.如图.张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′.测得塑像顶部A处的仰角为45°.点D在观测点C正下方城墙底的地面上.若CD=10米.则此塑像的高AB约为58米〔参考数据:tan78°12′≈4.8.[分析]直接利用锐角三角函数关系得出EC的长.进而得出AE的长.进而得出答案.[解答]解:如图所示:由题意可得:CE⊥AB于点E.BE=DC.∵∠ECB=18°48′.∴∠EBC=78°12′.则tan78°12′===4.8.解得:EC=48〔m.∵∠AEC=45°.则AE=EC.且BE=DC=10m.∴此塑像的高AB约为:AE+EB=58〔米.故答案为:58.[点评]此题主要考查了解直角三角形的应用.根据题意得出EC的长是解题关键.22.〔2016XX如图.为测量一座山峰CF的高度.将此山的某侧山坡划分为AB和BC两段.每一段山坡近似是"直"的.测得坡长AB=800米.BC=200米.坡角∠BAF=30°.∠CBE=45°.〔1求AB段山坡的高度EF;〔2求山峰的高度CF.〔1.414.CF结果精确到米[分析]〔1作BH⊥AF于H.如图.在Rt△ABF中根据正弦的定义可计算出BH的长.从而得到EF的长;〔2先在Rt△CBE中利用∠CBE的正弦计算出CE.然后计算CE和EF的和即可.[解答]解:〔1作BH⊥AF于H.如图.在Rt△ABF中.∵sin∠BAH=.∴BH=800•sin30°=400.∴EF=BH=400m;〔2在Rt△CBE中.∵sin∠CBE=.∴CE=200•sin45°=100≈141.4.∴CF=CE+EF=141.4+400≈541〔m.答:AB段山坡高度为400米.山CF的高度约为541米.[点评]本题考查了解直角三角形的应用﹣坡度与坡角问题:坡度是坡面的铅直高度h和水平宽度l的比.又叫做坡比.它是一个比值.反映了斜坡的陡峭程度.一般用i表示.常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角.坡度i与坡角α之间的关系为:i═tanα.21.〔2016XX如图.天星山山脚下西端A处与东端B处相距800〔1+米.小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°.东端的坡角是30°.小军的行走速度为米/秒.若小明与小军同时到达山顶C处.则小明的行走速度是多少?[考点]解直角三角形的应用-坡度坡角问题.[分析]过点C作CD⊥AB于点D.设AD=x米.小明的行走速度是a米/秒.根据直角三角形的性质用x表示出AC与BC的长.再根据小明与小军同时到达山顶C处即可得出结论.[解答]解:过点C作CD⊥AB于点D.设AD=x米.小明的行走速度是a米/秒.∵∠A=45°.CD⊥AB.∴AD=CD=x米.∴AC=x.在Rt△BCD中.∵∠B=30°.∴BC===2x.∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处.∴=.解得a=1米/秒.答:小明的行走速度是1米/秒.21.〔2016XX〔本题满分9分为了维护海洋权益.新组建的国家海洋局加大了在南海的巡逻力度。一天.我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻.同时发现一艘不明国籍的船只停在C处海域。如图所示.AB=60海里.在B处测得C在北偏东45º的方向上.A处测得C在北偏西30º的方向上.在海岸线AB上有一灯塔D.测得AD=120海里。〔1〔4分分别求出A与C及B与C的距离AC.BC〔结果保留根号〔2〔5分已知在灯塔D周围100海里范围内有暗礁群.我在A处海监船沿AC前往C处盘查.途中有无触礁的危险?〔参考数据:=1.41.=1.73.=2.45第21题图[考点]解直角三角形的应用-方向角问题.[分析]〔1过点C作CE⊥AB于E.解直角三角形即可求出A与C及B与C的距离AC.BC;〔2过点D作DF⊥AC于F.解直角三角形即可求出DF的长.再比较与100的大小.从而得出结论有无触礁的危险.[解答]解:⑴作CE⊥AB于E,设AE=x〔1分则在△ACE中,CE=√3xAC=2x在△BCE中.BE=CE=√3xBC=√6x〔2分由AB=AE+BE∴x+√3x=60<√6+√2>解得x=60√2〔3分所以AC=120√2<海里>.BC=120√3<海里>〔4分⑵作DF⊥AC于F,〔1分在△AFD中,DF=√3/2DA〔2分∴DF=√3/2×60<√6-√2>=60<3√2-√6>≈106.8>100〔4分所以无触礁危险.〔5分[点评]本题主要考查了解直角三角形的应用-方向角问题.求三角形的边或高的问题一般可以转化为解直角三角形的问题.解决的方法就是作高线.20.〔2016XX如图.在办公楼AB和实验楼CD之间有一旗杆EF.从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点.且俯角为45°.从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点.BG=1米.且俯角为30°.已知旗杆EF=9米.求办公楼AB的高度.〔结果精确到1米.参考数据:≈1.41.≈1.73[考点]解直角三角形的应用-仰角俯角问题.[分析]根据题意求出∠BAD=∠ADB=45°.进而根据等腰直角三角形的性质求得FD.在Rt△GEH中.利用特殊角的三角函数值分别求出BF.即可求得PG.在Rt△AGP中.继而可求出AB的长度.[解答]解:由题意可知∠BAD=∠ADB=45°.∴FD=EF=9米.AB=BD在Rt△GEH中.∵tan∠EGH==.即.∴BF=8.∴PG=BD=BF+FD=8+9.AB=〔8+9米≈23米.答:办公楼AB的高度约为23米.[点评]本题考查了解直角三角形的应用.解答本题的关键是构造直角三角形.利用三角函数的知识求解相关线段的长度.22.〔2016黄冈〔满分8分"一号龙卷风"给小岛O造成了较大的破坏.救灾部门迅速组织力量.从仓储处调集物资.计划先用汽车运到与D在同一直线上的C.B.A三个码头中的一处.再用货船运到小岛O.已知:OA⊥AD.∠ODA=15°.∠OCA=30°.∠OBA=45°.CD=20km.若汽车行驶的速度为50km/时.货船航行的速度为25km/时.问这批物资在哪个码头装船.最早运抵小岛O?〔在物资搬运能力上每个码头工作效率相同;参考数据:≈1.4;≈1.7〔〔第22题[考点]解直角三角形的应用.[分析]要知道这批物资在哪个码头装船最早运抵小岛O.则需分别计算出从C.B.A三个码头到小岛O所需的时间.再比较.用时最少的最早运抵小岛O.题目中已知了速度.则需要求出CO.CB、BO.BA、AO的长度.[解答]解:∵∠OCA=30°.∠D=15°.∴∠DOC=15°.∴CO=CD=20km.……………….1分在Rt△OAC中.∵∠OCA=30°.∴OA=10.AC=10.在Rt△OAB中.∵∠OBA=45°.∴OA=AB=10.OB=10.∴BC=AC-AB=10-10.………………..4分①从CO所需时间为:20÷25=0.8;……………..……..5分②从CBO所需时间为:〔10-10÷50+10÷25≈0.62;…………..6分③从CAO所需时间为:10÷50+10÷25≈0.74;…………..7分∵0.62<0.74<0.8.∴选择从B码头上船用时最少.………………8分〔所需时间若同时加上DC段耗时0.4小时.亦可15.〔2016XX在综合实践课上.小聪所在小组要测量一条河的宽度.如图.河岸EF∥MN.小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向.然后沿河岸走了30米.到达B处.测得河对岸电线杆D位于北偏东30°方向.此时.其他同学测得CD=10米.请根据这些数据求出河的宽度为〔30+10米.〔结果保留根号[考点]解直角三角形的应用-方向角问题.[分析]如图作BH⊥EF.CK⊥MN.垂足分别为H、K.则四边形BHCK是矩形.设CK=HB=x.根据tan30°=列出方程即可解决问题.[解答]解:如图作BH⊥EF.CK⊥MN.垂足分别为H、K.则四边形BHCK是矩形.设CK=HB=x.∵∠CKA=90°.∠CAK=45°.∴∠CAK=∠ACK=45°.∴AK=CK=x.BK=HC=AK﹣AB=x﹣30.∴HD=x﹣30+10=x﹣20.在RT△BHD中.∵∠BHD=30°.∠HBD=30°.∴tan30°=.∴=.解得x=30+10.∴河的宽度为〔30+10米.[点评]本题考查解直角三角形的应用、方向角、三角函数等知识.解题的关键是添加辅助线构造直角三角形.学会利用三角函数的定义.列出方程解决问题.属于中考常考题型.21.〔2016随州某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度.已知烈山坡面与水平面的夹角为30°.山高857.5尺.组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点.在点E处测得雕像顶端A的仰角为60°.求雕像AB的高度.[考点]解直角三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论