版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知:如图,在菱形中,,,落在轴正半轴上,点是边上的一点(不与端点,重合),过点作于点,若点,都在反比例函数图象上,则的值为()A. B. C. D.2.估计的值应在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间3.如图,点在反比例函数的图象上,点在反比例函数的图象上,轴,连接,过点作轴于点,交于点,若,则的值为()A.﹣4 B.﹣6 C.﹣8 D.﹣94.如图所示,在平行四边形ABCD中,AD=9,AB=5,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.4和5 B.5和4 C.6和3 D.3和65.如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是()A.七年级借阅文学类图书的人数最多B.八年级借阅教辅类图书的人数最少C.两个年级借阅文学类图书的人数最多D.七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同6.如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是()A.四边形是平行四边形B.如果,那么四边形是矩形.C.如果平分,那么四边形是正方形.D.如果且,那么四边形是菱形.7.如图,绕点逆时针旋转得到,若,,则的度数是()A. B.C. D.8.若分式的值为0,则的值等于A.0 B.3 C.-3 D.39.若,则下列不等式正确的是A. B. C. D.10.下列选项中,平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对边分别相等C.对角线互相平分 D.对角线相等11.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m12.解关于x的方程产生增根,则常数m的值等于()A.-2 B.-1 C.1 D.2二、填空题(每题4分,共24分)13.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.14.直线与直线平行,则______.15.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是_______.16.如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为___18.若分式的值为0,则的值为________.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.20.(8分)如图,直线与直线,两直线与轴的交点分别为、.(1)求两直线交点的坐标;(2)求的面积.21.(8分)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?22.(10分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?23.(10分)某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.年对、两区的空气量进行监测,将当月每天的空气污染指数(简称:)的平均值作为每个月的空气污染指数,并将年空气污染指数绘制如下表.据了解,空气污染指数时,空气质量为优:空气污染指数时,空气质量为良:空气污染指数时,空气质量为轻微污染.月份地区区区(1)请求出、两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对区、区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.(10分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)填空:△ABC≌△;AC和BD的位置关系是(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为cm.25.(12分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.26.如图,直线与轴、轴分别交于,点的坐标为,是直线在第一象限内的一个动点(1)求⊿的面积与的函数解析式,并写出自变量的取值范围?(2)过点作轴于点,作轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由?
参考答案一、选择题(每题4分,共48分)1、C【解析】
过作,交于,根据菱形的性质得出四边形是平行四边形,,,解直角三角形求得,作轴于,过点作于,解直角三角形求得,,设,则,根据反比例函数系数的几何意义得出,解得,从而求得的值.【详解】解:如图,过作,交于,在菱形中,,,,,,,,四边形是平行四边形,,于点,,作轴于,过点作于,,,,,,,,,,设,则,点,都在反比例函数图象上,,解得,,,.故选.【点睛】本题考查了反比例函数系数的几何意义,菱形的性质,解直角三角形等,求得点的坐标是解题的关键.2、B【解析】
找到被开方数5前后的完全平方数4和9进行比较,可得答案【详解】解:∵,且∴∴【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.3、B【解析】
过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOC是矩形,四边形OEBF是矩形,得出S矩形AFOC=2,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OC,即OE=3OC,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【详解】解:如图,过点作轴于,延长线段,交轴于,∵轴,∴轴,∴四边形是矩形,四边形是矩形,∴,,∴,∵点在函数的图象上,∴,同理可得,∵,∴,∴,∴,∴,即.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的判定和性质,平行线分线段成比例定理,作出辅助线构建矩形,运用反比例函数系数k的几何意义是解题的关键.4、B【解析】
由平行四边形的性质得出BC=AD=5,AD∥BC,证出∠DAE=∠BEA,由角平分线得出∠BAE=∠DAE,因此∠BEA=∠BAE,由等角对等边得出BE=AB=5,即可求出EC的长.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=9,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=5,∴EC=BC-BE=4;故选:B.【点睛】本题考查了平行四边形的性质、角平分线、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证明BE=AB是解决问题的关键.5、D【解析】
根据扇形统计图的特点即可判断.【详解】解:A.七年级借阅文学类图书的人数最多,正确;B.八年级借阅教辅类图书的人数最少,正确;C.两个年级借阅文学类图书的人数最多,正确;由题意可得本题的总量无法确定,故不能确定哪个年级借阅图书的具体人数.故选:D.【点睛】此题主要考查扇形统计图的信息,解题的关键是熟知扇形统计图的特点.6、C【解析】
根据特殊的平行四边形的判定定理来作答.【详解】解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.故选:C.【点睛】本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.7、C【解析】
根据旋转的性质和三角形内角和180度求出<COD度数,再利用旋转角减去LCOD度数即可。【详解】解:根据旋转的性质可知:∠C=∠A=110°在△COD中,∠COD=180°-110°-40°=30°旋转角∠AOC=85°,所以∠α=85°-30°-55°故选:C.【点睛】本题主要考查了旋转的性质,解题的关键是找准旋转角.8、C【解析】
根据分式的值为零,则分子为零分母不为零,进而得出答案.【详解】解:∵分式的值为0,∴x2−9=0,x−1≠0,解得:x=−1.故选:C.【点睛】此题主要考查了分式的值为零的条件,正确记忆分子与分母的关系是解题关键.9、C【解析】
根据不等式的基本性质,逐个分析即可.【详解】若,则,,,.故选C【点睛】本题考核知识点:不等式的性质.解题关键点:熟记不等式的基本性质.10、D【解析】
根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得正确选项.【详解】∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A.B.C正确,D错误.故选D.【点睛】本题考查平行四边形的性质,解题关键在于对平行四边形性质的理解.11、B【解析】∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.12、A【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解;方程两边都乘(x−1),得x−3=m,∵方程有增根,∴最简公分母x−1=0,即增根是x=1,把x=1代入整式方程,得m=−2.故选A.【点睛】本题考查了分式方程的增根,解题的关键是求出增根进而求出未知字母的值.二、填空题(每题4分,共24分)13、(﹣3,2)【解析】由“士”的位置向右平移减1个单位,在向上平移1个单位,得所在位置的坐标为(-3,2),
故答案是:(-3,2).14、-1【解析】
根据平行直线的解析式的k值相等即可解答.【详解】解:∵直线y=kx+3与直线y=-1x+1平行,∴k=-1,故答案为-1.【点睛】本题考查了两条直线相交或平行问题,熟知“两直线平行,那么解析式中的比例系数相同”是解题的关键.15、1【解析】
首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【详解】第五组的频数是10×0.2=8,则第六组的频数是10-5-10-6-7-8=1.故答案是:1.【点睛】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.16、【解析】
根据一元一次方程无解,则m+1=0,即可解答.【详解】解:∵关于的方程无解,∴m+1=0,∴m=−1,故答案为m=−1.【点睛】本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.17、【解析】
设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,【详解】∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.18、2【解析】由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2,故选C.三、解答题(共78分)19、【解析】
把A(0,-3),B(1,2)代入y=kx+b,利用待定系数法即可求出直线的表达式【详解】设,将(0,-3)(1,2)代入得,解得,.【点睛】本题考查了一次函数式,利用待定系数法求出直线的表达式是解题的关键.20、(1)A(1,0),B(3,0);(2)1【解析】分析:(1)通过解方程组组可得到C点坐标;(2)先确定A点和B点坐标,然后根据三角形面积公式求解.详解:(1)由得∴.(2)在中,当时,∴在中,当时,∴∴∴.点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.21、(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【解析】
(1)根据题意列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率得到乙队的施工天数,令施工总费用为w万元,求出w与m的函数解析式,根据m的取值范围以及一次函数的性质求解即可.【详解】(1)设甲、乙两队单独完成这取工程各需2x,3x天,由题意得:,解得:,经检验:是原方程的根,∴,,答:甲、乙两队单独完成这取工程各需60,90天;(2)由题意得:,令施工总费用为w万元,则.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,,∴,∴当时,完成此项工程总费用最少,此时,元,答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.22、(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.【解析】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可.【详解】(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:,解得:x=1200,经检验得:x=1200是原方程的解,则x+300=1500,答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:1200y+1500(30﹣y)≤42000,y≥10,答:至少进货甲种空气净化器10台.【点睛】本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.23、(1)A区的的空气污染指数的平均数是79,B区的的空气污染指数的平均数是80;(2)A区【解析】
(1)根据平均数的计算公式分别进行计算即可;(2)根据平均数和众数的定义先求出各地区的平均数和众数,再进行比较即可得出答案.【详解】(1)A区的空气污染指数的平均数是:(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟记定义和计算公式是解题的关键.24、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3)245,26【解析】
(1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;(2)根据四条边都相等的四边形是菱形证明;(3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.【详解】(1)由图可知,AB=AD,CB=CD,在△ABC和△ADC中,AB=∴△ABC≌△ADC(SSS),∵AB=AD,∴点A在BD的垂直平分线上,∵CB=CD,∴点C在BD的垂直平分线上,∴AC垂直平分BD,∴AC⊥BD;(2)四边形ABCD是菱形.理由如下:由(1)可得AB=AD,CB=CD,∵AB=BC,∴AB=BC=CD=DA,∴四边形ABCD是菱形;(3)设点B到AD的距离为h,在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,在Rt△ADO中,AD=AO2+DS菱形ABCD=12AC•BD=AD•h即12×8×6=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度玻璃深加工技术创新合作合同3篇
- 2024版商品交易欺诈行为赔偿标准合同版B版
- 2024桥梁工程劳务分包及工程环保责任合同3篇
- 2024年铁路站房改扩建劳务分包合同模板下载3篇
- 2024道路标线涂料供应与维护服务合同
- 2025年度网络技术服务合同执行流程
- 2024年贷款承接与权益转让3篇
- 二零二五年度办公室设备智能化改造与运维合同
- 二零二五年度智慧环保技术研发与应用合同
- 2024年版电子商务平台产品代理合同
- 国际经济学国际贸易的标准理论
- 全面做好驻村第一书记驻村工作驻村第一书记工作开展.doc
- 超星尔雅学习通《通航空与航天(复旦大学上海大学)》章节测试附答案
- 寒假学习计划表
- 糖尿病酮症酸中毒病例讨论-文档资料
- 电力建设安全工作规程解析(线路部分)课件
- 软胶囊生产工艺流程
- 液相色谱质谱质谱仪LCMSMSSYSTEM
- 派克与永华互换表
- 宣传广告彩页制作合同
- 小学高年级语文作文情景互动教学策略探究教研课题论文开题中期结题报告教学反思经验交流
评论
0/150
提交评论