2023年黑龙江省哈尔滨松北区四校联考数学八年级第二学期期末综合测试模拟试题含解析_第1页
2023年黑龙江省哈尔滨松北区四校联考数学八年级第二学期期末综合测试模拟试题含解析_第2页
2023年黑龙江省哈尔滨松北区四校联考数学八年级第二学期期末综合测试模拟试题含解析_第3页
2023年黑龙江省哈尔滨松北区四校联考数学八年级第二学期期末综合测试模拟试题含解析_第4页
2023年黑龙江省哈尔滨松北区四校联考数学八年级第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有A. B.C. D.2.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.223.已知|a+1|+=0,则b﹣1=()A.﹣1 B.﹣2 C.0 D.14.下列四组线段中,可以构成直角三角形的是()A.3,4,5 B.1,2,3 C.4,5,65.如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO.则BE的长度为()A.3 B.102 C.5 D.6.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是28,18.6,1.1.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团 B.乙团 C.丙团 D.三个团都一样7.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()A.20 B.25 C.35 D.278.已知一个直角三角形的两边长分别为3和4,则第三边长为()A.5 B.7 C. D.或59.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1 B.2 C.3 D.410.如图所示,将△ABC绕点A按逆时针旋转50°后,得到△ADC′,则∠ABD的度数是()A.30° B.45° C.65° D.75°二、填空题(每小题3分,共24分)11.如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.12.已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是________.13.长方形的长是宽的2倍,对角线长是5cm,则这个长方形的长是______.14.如图,直线(>0)与轴交于点(-1,0),关于的不等式>0的解集是_____________.15.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.16.图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.17.分解因式:m2-9m=______.18.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.三、解答题(共66分)19.(10分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.(1)求点的坐标;(2)求一次函数和反比例函数的表达式.20.(6分)计算:÷+×﹣.21.(6分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。22.(8分)如图1,正方形中,点、的坐标分别为,,点在第一象限.动点在正方形的边上,从点出发沿匀速运动,同时动点以相同速度在轴上运动,当点运动到点时,两点同时停止运动,设运动时间为秒.当点在边上运动时,点的横坐标(单位长度)关于运动时间(秒)的函数图象如图2所示.(1)正方形边长_____________,正方形顶点的坐标为__________________;(2)点开始运动时的坐标为__________,点的运动速度为_________单位长度/秒;(3)当点运动时,点到轴的距离为,求与的函数关系式;(4)当点运动时,过点分别作轴,轴,垂足分别为点、,且点位于点下方,与能否相似,若能,请直接写出所有符合条件的的值;若不能,请说明理由.23.(8分)如图,□ABCD的对角线AC、BD相交于点O,AC平分∠BAD,DP//AC,CP//BD.(1)求证:四边形ABCD是菱形;(2)若AC=4,BD=6,求OP的长.24.(8分)如图,在平面直角坐示系xOy中,直线与直线交于点A(3,m).(1)求k,m的値;(2)己知点P(n,n),过点P作垂直于y轴的直线与直线交于点M,过点P作垂直于x轴的直线与直线交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(10分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.26.(10分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.(1)求购买这种商品的货款y(元)与购买数量x(件)之间的函数关系;(2)当x=3,x=6时,货款分别为多少元?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

设该店春装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.【详解】解:设该店春装原本打x折,依题意,得:500()2=1.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、D【解析】

观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.3、B【解析】

根据非负数的性质求出a、b的值,然后计算即可.【详解】解:∵|a+1|+=0,∴a+1=0,a-b=0,解得:a=b=-1,∴b-1=-1-1=-1.故选:B.【点睛】本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.4、A【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.32+42=52,能构成直角三角形,故符合题意;B.12+(2)2≠32,不能构成直角三角形,故不符合题意;C.42+52≠62,不能构成直角三角形,故不符合题意;D.12+12≠22,不能构成直角三角形,故不符合题意。故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.5、C【解析】

利用正方形的性质得到OB=OC=22BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE【详解】∵正方形ABCD的边长为2,∴OB=OC=22BC=22×2=1,OB⊥∵CE=OC,∴OE=2,在Rt△OBE中,BE=12故选C.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.6、C【解析】

根据方差的意义即可得.【详解】方差越小,表示游客年龄波动越小、越相近则他应该选择丙团故选:C.【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.7、D【解析】

第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=个,进一步求得第(6)个图形中面积为1的正方形的个数即可.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。故选:D【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律8、D【解析】分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.9、B【解析】

根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【详解】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选B.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.10、C【解析】

先根据旋转的性质得AB=AD,∠BAD=50°,则利用等腰三角形的性质得到∠ABD=∠ADB,然后根据三角形内角和计算∠ABD的度数.【详解】∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB,∴∠ABD=(180°-50°)=65°.故选:C.【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理;熟练掌握旋转的性质,得到△ABD为等腰三角形是解决问题的关键.二、填空题(每小题3分,共24分)11、,【解析】

根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.【详解】正△的边长,正△的面积,点、、分别为△的三边中点,,,,△△,相似比为,△与△的面积比为,正△的面积为,则第个正△的面积为,故答案为:;.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12、1【解析】

根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.【详解】∵∠ACB=90°,E是AB的中点,∴AB=2CE=16,∵D、F分别是AC、BC的中点,∴DF=AB=1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13、【解析】

设矩形的宽是a,则长是2a,再根据勾股定理求出a的值即可.【详解】解:设矩形的宽是a,则长是2a,对角线的长是5cm,,解得,这个矩形的长,故答案是:.【点睛】考查的是矩形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.14、x>-1【解析】

先根据一次函数y=ax+b的图象交x轴交于点(-1,0)可知,当x>-1时函数图象在x轴的上方,故可得出结论.【详解】∵直线y=ax+b(a>0)与x轴交于点(-1,0),由函数图象可知,当x>-1时函数图象在x轴的上方,∴ax+b>0的解集是x>-1.故答案为:x>-1.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.15、14【解析】

根据甲权平均数公式求解即可.【详解】(4×13+7×14+4×15)÷15=14岁.故答案为:14.【点睛】本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).16、乙乙槽中铁块的高度为14cm【解析】

根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.【详解】①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,故答案为乙,乙槽中铁块的高度为14cm.【点睛】本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.17、m(m-9)【解析】

直接提取公因式m即可.【详解】原式=m(m-9).故答案为:m(m-9).【点睛】此题主要考查了提公因式法分解因式,关键是正确找出公因式.18、(16,32)(−21009,−21010).【解析】

根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8、A9等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】当x=1时,y=2,∴点A1的坐标为(1,2);当y=−x=2时,x=−2,∴点A2的坐标为(−2,2);同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).∵2019=504×4+3,∴点A2019的坐标为(−2504×2+1,−2504×2+2),即(−21009,−21010).故答案为(16,32),(−21009,−21010).【点睛】此题主要考查一次函数与几何规律探索,解题的关键是根据题意得到坐标的变化规律.三、解答题(共66分)19、(1);(2).【解析】

(1)利用,可以就可以求出A点的坐标(2)利用A,B的坐标求出一次函数的解析式,然后利用C点坐标求出反比例函数的表达式。【详解】解:(1),而,,点坐标为;(2)点坐标为,把、代入得,即得,一次函数解析式为;把代入得,点坐标为,,反比例函数解析式为【点睛】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.20、.【解析】

先进行二次根式化简和乘除运算,然后再进行加减即可.【详解】解:原式=4﹣.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.21、(1)(2)不公平.获胜,否则.【解析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,即转化为在总情况明确的情况下,判断双方取胜的情况数目是否相等.22、(3)30,(35.2);(2)(3,0),3;(3)d=t﹣5;(5)t的值为3s或s或s.【解析】

(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.利用全等三角形的性质解决问题即可.(2)根据题意,易得Q(3,0),结合P、Q得运动方向、轨迹,分析可得答案;(3)分两种情形:①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.分别求解即可解决问题.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,利用(3)中结论构建方程即可解决问题.【详解】解:(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.∵∠ABC=90°=∠AHB=∠BFC∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,∴∠BAH=∠CBF,∵AB=BC,∴△ABH≌△BCF.∴BH=CF=8,AH=BF=3.∴AB==30,HF=35,∴OG=FH=35,CG=8+5=2.∴所求C点的坐标为(35,2).故答案为30,(35,2)(2)根据题意,易得Q(3,0),点P运动速度每秒钟3个单位长度.故答案为(3,0),3.(3)①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.易知四边形OHKN是矩形,可得OH=KN=5,∵PK∥AH,∴,∴,∴PK=(30﹣t),∴d=PK+KN=﹣t+30.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.同法可得PK=(t﹣30),∴d=PK+KN=t﹣5.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形:当时,△APM与△OPN相似,可得,解得t=3.当时,△APM与△OPN相似,可得,解得t=.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,可得:∠OPN=∠PAM=∠AOP,∵PM⊥OA,∴AM=OM=PN=5,由(3)②可知:5=t﹣5,解得t=.综上所述,拇指条件的t的值为3s或s或s.【点睛】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,需要利用参数构建方程解决问题,属于中考压轴题.23、(1)见解析;(2)【解析】

(1)首先通过角平分线的定义和平行四边形的性质,平行线的性质得出,则有,再利用一组邻边相等的平行四边形是菱形即可证明;(2)首先根据题意和菱形的性质证明四边形OCPD是矩形,然后利用矩形的性质和勾股定理即可得出答案.【详解】(1)∵AC平分∠BAD,.∵四边形ABCD是平行四边形,,,,,∴平行四边形ABCD是菱形;(2)∵平行四边形ABCD是菱形,∴,.∵DPAC,CPBD,∴四边形OCPD是平行四边形.,∴四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论