2023年江苏省泰州市姜堰区八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
2023年江苏省泰州市姜堰区八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
2023年江苏省泰州市姜堰区八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
2023年江苏省泰州市姜堰区八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
2023年江苏省泰州市姜堰区八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3 B.5 C.2 D.6.52.下列根式中是最简二次根式的是()A. B. C. D.3.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50° B.25° C.15° D.204.下列说法正确的是()A.两锐角分别相等的两个直角三角形全等B.两条直角边分别相等的两直角三角形全等C.一个命题是真命题,它的逆命题一定也是真命题D.经过旋转,对应线段平行且相等5.如图,在矩形ABCD中,E,F,G,H分别为边AB,DA,CD,BC的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.86.下列图形中,不是中心对称图形的是()A.平行四边形 B.矩形 C.菱形 D.等边三角形7.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定8.如图:由火柴棒拼出的一列图形,第个图形是由个等边三角形拼成的,通过观察,分析发现:第8个图形中平行四边形的个数().A.16 B.18 C.20 D.229.如图,中,,AD平分,点E为AC的中点,连接DE,若的周长为26,则BC的长为A.20 B.16 C.10 D.810.老师在计算学生每学期的总成绩时,是把平时成绩和考试成绩按如图所示的比例计算.如果一个学生的平时成绩为70分,考试成绩为90分,那么他的学期总评成绩应为(

)A.70分

B.90分

C.82分

D.80分11.下列二次根式中,与是同类二次根式的是A. B. C. D.12.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对二、填空题(每题4分,共24分)13.将直线y=2x-3向上平移5个单位可得______直线.14.二次函数y=ax2+bx+c的函数值y自变量x之间的部分对应值如表:此函数图象的对称轴为_____.x……-1014……y……4-1-4-1……15.若三角形三边分别为6,8,10,那么它最长边上的中线长是_____.16.如图,在平行四边形ABCD中,AC和BD交于点O,过点O的直线分别与AB,DC交于点E,F,若△AOD的面积为3,则四边形BCFE的面积等于_____.17.小明的生日是6月19日,他用6、1、9这三个数字设置了自己旅行箱三位数字的密码,但是他忘记了数字的顺序,那么他能一次打开旅行箱的概率是__________.18.已知,点P在轴上,则当轴平分时,点P的坐标为______.三、解答题(共78分)19.(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0),将△ABC绕原点O顺时针旋转90°得到△A'B'C'.(1)画出△A’B’C’,并直接写出点A的对应点A'的坐标;(2)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.20.(8分)如图1,矩形顶点的坐标为,定点的坐标为.动点从点出发,以每秒个单位长度的速度沿轴的正方向匀速运动,动点从点出发,以每秒个单位长度的速度沿轴的负方向匀速运动,两点同时运动,相遇时停止.在运动过程中,以为斜边在轴上方作等腰直角三角形,设运动时间为秒,和矩形重叠部分的面积为,关于的函数如图2所示(其中,,时,函数的解析式不同).当时,的边经过点;求关于的函数解析式,并写出的取值范围.21.(8分)列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?22.(10分)如图,在平面直角坐标系中,已知点A(﹣1,3),B(﹣3,1),C(﹣1,1).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(1)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A1B1C1.23.(10分)如图,在正方形中,点是边上的一动点,点是上一点,且,、相交于点.(1)求证:;(2)求的度数(3)若,求的值.24.(10分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)25.(12分)抛物线y=x2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0).(1)写出B点的坐标;(2)求抛物线的函数解析式;(3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.26.如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【详解】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC-DE=8-5=3;故选A.【点睛】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.2、A【解析】

根据最简二次根式的定义即可求出答案.【详解】B.原式,故B不是最简二次根式;C.原式,故C不是最简二次根式;D.原式,故D不是最简二次根式;故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.3、B【解析】

根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.【详解】在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=12AB,PN=12DC,PM∥AB,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN=180°-130°2故选B.【点睛】本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.4、B【解析】

A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;

B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;D、经过旋转,对应线段相等,故D选项错误;故选:B.【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5、B【解析】

连接AC,根据三角形中位线定理得到EH∥AC,EH=AC,得到△BEH∽△BAC,根据相似三角形的性质计算即可.【详解】解:连接AC,∵E、H分别为边AB、BC的中点,∴EH∥AC,EH=AC,∴△BEH∽△BAC,∴S△BEH=S△BAC=S矩形ABCD,同理可得,图中阴影部分的面积=×2×4=4,故选B.【点睛】本题考查的是三角形中位线定理、相似三角形的性质,掌握三角形中位线定理、相似三角形的面积比等于相似比的平方是解题的关键.6、D【解析】

根据中心对称图形的概念中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、平行四边形是中心对称图形,故本选项错误;B、矩形是中心对称图形,故本选项错误;C、菱形是中心对称图形,故本选项错误;D、等边三角形不是中心对称图形,故本选项正确.故选D.7、A【解析】

先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【详解】∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S△ABC=AB·CD=AC·BC,1.5CD=1.2×0.9,CD=0.72,故选A.【点睛】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.8、C【解析】

根据图形易得:n=1时有1=12个平行四边形;n=2时有2=1×2个平行四边形;n=3时有4=22个平行四边形;n=4时有6=2×3个平行四边形;由此可知应分n的奇偶,得出答案.【详解】解:∵n=1时有1=12个平行四边形;n=2时有2=1×2个平行四边形;n=3时有4=22个平行四边形;n=4时有6=2×3个平行四边形;…∴当为第2k-1(k为正整数)个图形时,有k2个平行四边形,当第2k(k为正整数)个图形时,有k(k+1)个平行四边形,第8个图形中平行四边形的个数为即当k=4时代入得4×5=20个,故选C.【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9、A【解析】

根据等腰三角形的性质可得,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】,AD平分,,,点E为AC的中点,.的周长为26,,.故选A.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.10、C【解析】

根据平时成绩和考试成绩的占比,可计算得出总评成绩.【详解】70.故答案为:C【点睛】考查的是加权平均数的求法.熟记公式是解决本题的关键.解题时要认真审题,不要把数据代错.11、D【解析】

先将各选项化简,再根据同类二次根式的定义解答.【详解】解:A、与被开方数不同,不是同类二次根式,故本选项错误;B、=3是整数,故选项错误;C、=与的被开方数不同,不是同类二次根式,故本选项错误;D、与被开方数相同,是同类二次根式,故本选项正确.故选:D.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12、B【解析】

首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【详解】解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=1.故选B.二、填空题(每题4分,共24分)13、y=1x+1【解析】

根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.【详解】解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,那么新直线的k=1,b=-3+5=1.∴新直线的解析式为y=1x+1.故答案是:y=1x+1.【点睛】此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.14、直线x=1【解析】

根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.【详解】解:∵x=0、x=4时的函数值都是−1,∴此函数图象的对称轴为直线x==1,即直线x=1.故答案为:直线x=1.【点睛】本题考查了二次函数的性质,主要利用了二次函数图象的对称性.15、1【解析】

根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵三角形三边分别为6,8,10,62+82=102,∴该三角形为直角三角形,∵最长边即斜边为10,∴斜边上的中线长为:1,故答案为1.【点睛】本题考查了勾股定理的逆定理、直角三角形斜边中线的性质,熟练掌握勾股定理的逆定理以及直角三角形斜边中线的性质是解题的关键.16、6【解析】

根据平行四边形的性质得到OD=OB,得到△AOB的面积=△AOD的面积,求出平行四边形ABCD的面积,根据中心对称图形的性质计算.【详解】解:∵四边形ABCD是平行四边形,∴OD=OB,∴△AOB的面积=△AOD的面积=3,∴△ABD的面积为6,∴平行四边形ABCD的面积为12,∵平行四边形是中心对称图形,∴四边形BCFE的面积=×平行四边形ABCD的面积=×12=6,故答案为:6.【点睛】本题主要考查了全等三角形的判定,平行四边形的性质,掌握全等三角形的判定,平行四边形的性质是解题的关键.17、【解析】

首先利用列举法可得:等可能的结果有:619,691,169,196,961,916;然后直接利用概率公式求解即可求得答案.【详解】解:∵等可能的结果有:619,691,169,196,961,916;∴他能一次打开旅行箱的概率是:,故答案为:.【点睛】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.18、【解析】

作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.【详解】如图,作点A关于y轴对称的对称点∵,点A关于y轴对称的对称点∴设直线的解析式为将点和点代入直线解析式中解得∴直线的解析式为将代入中解得∴故答案为:.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.三、解答题(共78分)19、(1)画图见解析;(2),或.【解析】试题分析:(1)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据平行四边形的对边平行且相等,分AB、BC、AC是对角线三种情况分别写出即可.试题解析:(1)如图所示△DEF为所求;(2)若AB是对角线,则点D(-7,3),若BC是对角线,则点D(-5,-3),若AC是对角线,则点D(3,3),故答案为或或.20、(1)1;(2)S=【解析】

(1)PQR的边QR经过点B时,构成等腰直角三角形,则由AB=AQ,列方程求出t值即可.(2)在图形运动的过程中,有三种情形,当1<t≤2时,当1<t≤2时,当2<t≤4时,进行分类讨论求出答案.【详解】解:PQR的边QR经过点B时,构成等腰直角三角形;AB=AQ,即3=4-t①当时,如图设交于点,过点作于点则②当时,如图设交于点交于点则,③当时,如图设与交于点,则综上所述,关于的函数关系式为:S=【点睛】此题属于四边形综合题.考查了矩形的性质、等腰直角三角形的性质、相似三角形的判定与性质以及动点问题.注意掌握分类讨论思想的应用是解此题的关键.21、汽车和自行车的速度分别是75千米/时、15千米/时.【解析】试题分析:设自行车的速度为x千米/时,则汽车的速度为(x+60)千米/时,根据等量关系:一班师生骑自行车走4千米所用时间=二班师生乘汽车20千米所用时间,列出方程即可得解.试题解析:设自行车的速度为x千米/时,则汽车的速度为(x+60)千米/时,根据题意得:,解得:x=15(千米/时),经检验,x=15是原方程的解且符合题意.,则汽车的速度为:(千米/时),答:汽车和自行车的速度分别是75千米/时、15千米/时.22、(1)作图见解析;(1)作图见解析.【解析】分析:(1)根据中心对称的性质画出△A1B1C1,再写出A1的坐标即可;(1)根据点P、P′的坐标确定出平移规律,再求出A1、B1、C1的坐标,根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可详解:(1)如图,A1的坐标为(1,-3).(1)点睛:本题考查了利用平移变换作图,中心对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键23、(1)见解析;(2)∠AGD=90°;(3).【解析】

(1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,,结合全等三角形的判定方法得出答案;(2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;(3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出的值.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠DCE=90°,在△ADF和△DCE中;∴△ADF≌△DCE(SAS);(2)解:由(1)得△ADF≌△DCE,∴∠DAF=∠CDE,∵∠ADG+∠CDE=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,(3)过点B作BH⊥AG于H∵BH⊥AG,∴∠BHA=90°,∴∠BHA=∠AGD,∵四边形ABCD是正方形,∴AB=AD=BC,∠BAD=90°,∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,∴∠ABH=∠DAG,在△ABH和△ADG中,∴△ABH≌△ADG(AAS),∴AH=DG,∵BG=BC,BA=BC,∴BA=BG,∴AH=AG,∴DG=AG,∴.【点睛】此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.24、3.2克.【解析】

设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意.答:A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.25、(1)B(3,0);(2)y=x2−2x−3;(3)P(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论