【2022人教数学A版选修】《独立性检验基本思想及其应用》_第1页
【2022人教数学A版选修】《独立性检验基本思想及其应用》_第2页
【2022人教数学A版选修】《独立性检验基本思想及其应用》_第3页
【2022人教数学A版选修】《独立性检验基本思想及其应用》_第4页
【2022人教数学A版选修】《独立性检验基本思想及其应用》_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2独立性检验的基本思想及其初步应用(一)高二数学选修2-3

第三章统计案例

吸烟与肺癌列联表不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)在不吸烟者中患肺癌的比重是

在吸烟者中患肺癌的比重是

说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。0.54%2.28%探究不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000从三维柱形图能清晰看出各个频数的相对大小。从二维条形图能看出,吸烟者中患肺癌的比例高于不患肺癌的比例。通过图形直观判断两个分类变量是否相关:不吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例。

上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?这需要用统计观点来考察这个问题。

现在想要知道能够以多大的把握认为“吸烟与患肺癌有关”,为此先假设

H0:吸烟与患肺癌没有关系.不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d把表中的数字用字母代替,得到如下用字母表示的列联表

用A表示不吸烟,B表示不患肺癌,则“吸烟与患肺癌没有关系”等价于“吸烟与患肺癌独立”,即假设H0等价于P(AB)=P(A)P(B).因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;

|ad-bc|越大,说明吸烟与患肺癌之间关系越强。不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d在表中,a恰好为事件AB发生的频数;a+b和a+c恰好分别为事件A和B发生的频数。由于频率接近于概率,所以在H0成立的条件下应该有

为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量-----卡方统计量(1)

若H0成立,即“吸烟与患肺癌没有关系”,则K2应很小。根据表3-7中的数据,利用公式(1)计算得到K2的观测值为:那么这个值到底能告诉我们什么呢?(2)

独立性检验引入一个随机变量:卡方统计量查对临界值表,作出判断。P(χ≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828P(χ≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.8280.1%把握认为A与B无关1%把握认为A与B无关99.9%把握认为A与B有关99%把握认为A与B有关90%把握认为A与B有关10%把握认为

A与B无关没有充分的依据显示A与B有关,但也不能显示A与B无关已知在成立的情况下,故有99.9%的把握认为H0不成立,即有99.9%的把握认为“患病与吸烟有关系”。即在成立的情况下,大于10.828概率非常小,近似为0.001现在的=56.632的观测值远大于10.828,出现这样的观测值的概率不超过0.001。在H0成立的情况下,统计学家估算出如下的概率

即在H0成立的情况下,K2的值大于6.635的概率非常小,近似于0.01。

也就是说,在H0成立的情况下,对随机变量K2进行多次观测,观测值超过6.635的频率约为0.01。思考

答:判断出错的概率为0.01。判断是否成立的规则如果,就判断不成立,即认为吸烟与患肺癌有关系;否则,就判断成立,即认为吸烟与患肺癌有关系。独立性检验的定义

上面这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法,称为两个分类变量的独立性检验。在该规则下,把结论“成立”错判成“不成立”的概率不会差过即有99%的把握认为不成立。反证法原理与假设检验原理反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立。假设检验原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立。在实际应用中,要在获取样本数据之前通过下表确定临界值:0.500.400.250.150.100.4550.7081.3232.0722.7060.050.0250.0100.0050.0013.8415.0246.6357.87910.828具体作法是:(1)根据实际问题需要的可信程度确定临界值;(2)利用公式(1),由观测数据计算得到随机变量观测值k;(3)如果,就以的把握认为“X与Y有关系”;否则就说样本观测数据没有提供“X与Y有关系”的充分证据。例1.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。问:该种血清能否起到预防感冒的作用?未感冒感冒合计使用血清258242500未使用血清216284500合计4745261000解:设H0:感冒与是否使用该血清没有关系。因当H0成立时,χ2≥6.635的概率约为0.01,故有99%的把握认为该血清能起到预防感冒的作用。P(χ≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828P(χ≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828有效无效合计口服584098注射643195合计12271193解:设H0:药的效果与给药方式没有关系。因当H0成立时,χ2≥1.3896的概率大于10%,故不能否定假设H0,即不能作出药的效果与给药方式有关的结论。<2.706例2:为研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查的结果列在表中,根据所选择的193个病人的数据,能否作出药的效果和给药方式有关的结论?P(χ≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828例3:气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示,问:它们的疗效有无差异?有效无效合计复方江剪刀草18461245胆黄片919100合计27570345解:设H0:两种中草药的治疗效果没有差异。因当H0成立时,χ2≥10.828的概率为0.001,故有99.9%的把握认为,两种药物的疗效有差异。例4.

某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:

根据表中的数据,判定主修统计专业与性别有关系,则这种判断出错的可能性为多少?

解:根据表中的数据,得到

性别

专业非统计专业统计专业男1310女720

因为k≥3.841

,所以判定主修统计专业与性别有关系,则这种判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论