




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE4。。。内部文件,版权追溯内部文件,版权追溯内部文件,版权追溯课时跟踪检测(四十三)[高考基础题型得分练]1.给出下列四个命题:①垂直于同一平面的两条直线相互平行;②垂直于同一平面的两个平面相互平行;③若一个平面内有无数条直线与另一个平面都平行,那么这两个平面相互平行;④若一条直线垂直于一个平面内的任一直线,那么这条直线垂直于这个平面.其中真命题的个数是()A.1 B.2C.3 D.4答案:B解析:由直线与平面垂直的性质可知,①正确;正方体的相邻的两个侧面都垂直于底面,而不平行,故②错;由直线与平面垂直的定义知,④正确,而③错.2.如果一条直线垂直于一个平面内的下列各种情况:①三角形的两边;②梯形的两边;③圆的两直径;④正六边形的两边.不能保证该直线与平面垂直的是()A.①③ B.②C.②④ D.①②④答案:C解析:直线与平面垂直的条件是:平面外的直线和平面内的两条交线垂直,故②④不能保证.3.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案:D解析:由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l.解析:①AE⊂平面PAC,BC⊥AC,BC⊥PA⇒AE⊥BC,故①正确;②AE⊥PC,AE⊥BC,PB⊂平面PBC⇒AE⊥PB,AF⊥PB,EF⊂平面AEF⇒EF⊥PB,故②正确;③若AF⊥BC⇒AF⊥平面PBC,则AF∥AE,与已知矛盾,故③错误;由①可知④正确.9.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________. 答案:②③④解析:①中a与b可能相交或异面,故不正确.②垂直于同一直线的两平面平行,正确.③中存在γ,使得γ与α,β都垂直.④中只需直线l⊥α且l⊄β就可以.10.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案:DM⊥PC(或BM⊥PC)解析:连接AC,BD,则AC⊥BD.∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.11.如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.答案:eq\f(1,2)解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=eq\r(2),设Rt△AA1B1斜边AB1上的高为h,则DE=eq\f(1,2)h.又2×eq\r(2)=heq\r(22+\r(2)2),所以h=eq\f(2\r(3),3),DE=eq\f(\r(3),3).在Rt△DB1E中,B1E=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3)))2)=eq\f(\r(6),6).由面积相等得eq\f(\r(6),6)×eq\r(x2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2)=eq\f(\r(2),2)x,得x=eq\f(1,2).即线段B1F的长为eq\f(1,2).[冲刺名校能力提升练]1.[2017·吉林实验中学模拟]设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是()A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c答案:B解析:A的逆命题为:当c⊥α时,若α∥β,则c⊥β.由线面垂直的性质知,c⊥β,故A正确;B的逆命题为:当b⊂α时,若α⊥β,则b⊥β,显然错误,故B错误;C的逆命题为:当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c.由三垂线逆定理知,b⊥c,故C正确;D的逆命题为:当b⊂α,且c⊄α时,若b∥c,则c∥α.由线面平行判定定理知,c∥α,故D正确.2.[2017·河北衡水中学模拟]如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错误的是()A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH延长线经过点C1D.直线AH和BB1所成角为45°答案:D解析:对于A,由于AA1=AB=AD,所以点A在平面A1BD上的射影必到点A1,B,D的距离相等,即点H是△A1BD的外心,而A1B=A1D=BD,故点H是△A1BD的垂心,命题A是真命题;对于B,由于B1D1∥BD,CD1∥A1B,故平面A1BD∥平面CB1D1,而AH⊥平面A1BD,从而AH⊥平面CB1D1,命题B是真命题;对于C,由于AH⊥平面CB1D1,因此AH的延长线经过点C1,命题C是真命题;对于D,由C知直线AH即是直线AC1,又直线AA1∥BB1,因此直线AC1和BB1所成的角就等于直线AA1与AC1所成的角,即∠A1AC1,而tan∠A1AC1=eq\f(\r(2),1)=eq\r(2),因此命题D是假命题.3.[2017·江西上饶质检]已知m,n是两条不相同的直线,α,β是两个不重合的平面,现有以下说法:①若α∥β,n⊂α,m⊂β,则m∥n;②若m⊥α,m⊥β,n⊥α,则n⊥β;③若m⊥n,m⊥α,n⊥β,则α⊥β;④若m∥α,n∥β,α⊥β,则m⊥n;⑤若α⊥β,m⊂α,n⊂β,则m⊥n.其中正确说法的序号为________.答案:②③解析:对于①,注意到分别位于两个平行平面内的两条直线未必平行,可能是异面直线,因此①不正确;对于②,由定理“垂直于同一直线的两个平面平行”得知α,β平行;由定理“若一条直线垂直于两个平行平面中的一个,则它也垂直于另一个平面”得知,n⊥β,因此②正确;对于③,由定理“由空间一点向一个二面角的两个半平面分别引垂线,则这两条垂线所成的角与该二面角相等或互补”得知,③正确;对于④,分别平行于两个垂直平面的两条直线未必垂直,因此④不正确;对于⑤,m与n有可能平行,因此⑤不正确.综上所述,正确的说法有②③.4.[2017·甘肃兰州质检]如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,且E为CD的中点,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是________.(写出所有正确说法的序号)①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置(不在平面ABC内),都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.答案:①②④解析:由已知,在未折叠的原梯形中,AB∥DE,BE∥AD,所以四边形ABED为平行四边形,所以BE=AD,折叠后如图所示.①过点M作MP∥DE,交AE于点P,连接NP.因为M,N分别是AD,BE的中点,所以点P为AE的中点,故NP∥EC.又MP∩NP=P,DE∩CE=E,所以平面MNP∥平面DEC,故MN∥平面DEC,①正确;②由已知,AE⊥ED,AE⊥EC,所以AE⊥MP,AE⊥NP,又MP∩NP=P,所以AE⊥平面MNP,又MN⊂平面MNP,所以MN⊥AE,②正确;③假设MN∥AB,则MN与AB确定平面MNBA,从而BE⊂平面MNBA,AD⊂平面MNBA,与BE和AD是异面直线矛盾,③错误;④当EC⊥ED时,EC⊥AD.因为EC⊥EA,EC⊥ED,EA∩ED=E,所以EC⊥平面AED,AD⊂平面AED,所以EC⊥AD,④正确.5.[2017·贵州七校联考]如图,几何体EF-ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.(1)求证:AC⊥FB;(2)求几何体EF-ABCD的体积.(1)证明:由题意,得AD⊥DC,AD⊥DF,且DC∩DF=D,∴AD⊥平面CDEF,∴AD⊥FC.∵四边形CDEF为正方形,∴DC⊥FC.∵DC∩AD=D,∴FC⊥平面ABCD,∴FC⊥AC.又∵四边形ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∴AC=2eq\r(2),BC=2eq\r(2),则有AC2+BC2=AB2,∴AC⊥BC,又BC∩FC=C,∴AC⊥平面FCB,∴AC⊥FB.(2)解:如图,连接EC,过B作CD的垂线,垂足为N,易知BN⊥平面CDEF,且BN=2.∵VEF-ABCD=VE-ABCD+VB-EFC=eq\f(1,3)S梯形ABCD·DE+eq\f(1,3)S△EFC·BN=eq\f(16,3),∴几何体EF-ABCD的体积为eq\f(16,3).6.[2017·湖北八校联考]如图所示,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1.(2)设D是A1C1的中点,在线段BB1上是否存在点E,使DE∥平面ABC1?若存在,求三棱锥E-ABC1的体积;若不存在,请说明理由.(1)证明:在直三棱柱ABC-A1B1C1中,有A1A⊥平面ABC,∴A1A⊥AC.又∵A1A=AC,∴A1C⊥AC1.又∵BC1⊥A1C,AC1∩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公安消防职业技能考试-边防检查考试历年参考题库含答案解析(5卷100题合集单选)
- 2025四川奥库科技有限公司招聘硬件工程师等岗位测试笔试历年参考题库附带答案详解
- 政治八下考试卷及答案
- 初一语文骆驼祥子名著阅读同步练习试题
- 经典的早会主持人培训讲课文档
- 2025天津华北地质勘查总院有限公司招聘总和人员笔试历年参考题库附带答案详解
- 济源单招考试数学试卷
- AI芯片设计优化-洞察及研究
- 课堂达优数学试卷
- 社会工作伦理困境-第1篇-洞察及研究
- 共建共享健康中国课件
- 基层卫生院服务基层行-3.8.4药品不良反应管理
- 发改委专家评审管理办法
- 2025年广西中考语文试题卷(含答案及解析)
- 2025养殖场鸡舍承包合同范本
- 2025版标准正规劳动合同范本(房地产开发商专版)
- 拼音复习完整版本
- 2024年金华市警示教育基地管理中心招聘笔试真题
- 合肥市装配式建筑项目竣工阶段装配率审核认定申请表
- 七上语文综合性学习《有朋自远方来》梯度训练2 课件
- 新疆林地补偿管理办法
评论
0/150
提交评论