版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<02.已知,则有()A. B. C. D.3.已知点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则nm D.若a<b,则m>n4.下列分式是最简分式的是()A. B. C. D.5.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C. D.6.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定7.下列根式中,最简二次根式是()A. B. C. D.8.如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()A.四边形一定是平行四边形B.若,则四边形是矩形C.若四边形是菱形,则是等边三角形D.若四边形是正方形,则是等腰直角三角形9.已知不等式组的解集如图所示(原点未标出,数轴的单位长度为1),则的值为()A.4 B.3 C.2 D.110.等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)()A. B. C. D.11.如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为()A.3 B.4 C.5 D.612.据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)()A.21℃ B.22℃ C.23℃ D.24℃二、填空题(每题4分,共24分)13.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).14.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是12cm2,则AC的长是_____cm.15.正比例函数图象经过,则这个正比例函数的解析式是_________.16.如图,四边形中,,,且,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点得到四边形,如此进行下去,得到四边形,则四边形的面积是________.17.某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为90分、80分、85分,则小明的数学期末总评成绩为________分.18.若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.三、解答题(共78分)19.(8分)如图,四边形的对角线、相交于点,,过点且与、分别相交于点、,(1)求证:四边形是平行四边形;(2)连接,若,周长是15,求四边形的周长.20.(8分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.(1)求y与x之间的函数关系式.(2)分别求第10天和第15天的销售金额.(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?21.(8分)网店店主小李进了一批某种商品,每件进价10元.预售一段时间后发现:每天销售量(件)与售价(元/件)之间成一次函数关系:.(1)小李想每天赚取利润150元,又要使所进的货尽快脱手,则售价定为多少合适?(2)小李想每天赚取利润300元,这个想法能实现吗?为什么?22.(10分)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y(k<0,x<0)的图象上,点P(m,n)是函数y(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S1,求S1;(1)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S1.写出S1与m的函数关系式,并标明m的取值范围.23.(10分)如图,是边长为2的等边三角形,将沿直线平移到的位置,连接.(1)求平移的距离;(2)求的长.24.(10分)(1)计算:(2)当时,求代数的值.25.(12分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点.如:线段AB的两个端点都在格点上.(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;(3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.26.(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据第四象限点的坐标符号,得出a>0,a﹣1<0,即可得出0<a<1,选出答案即可.【详解】解:∵点P(a,a﹣1)在第四象限,∴a>0,a﹣1<0,解得0<a<1.故选:B2、A【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.【详解】m=(-)×(-2),=,
=×3=2=,
∵,
∴5<<6,
即5<m<6,
故选A.【点睛】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.3、D【解析】
根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【详解】∵点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.4、C【解析】
解:A、=﹣1;B、;C、分子、分母中不含公因式,不能化简,故为最简分式;D、故选C.5、D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.6、C【解析】
已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得
BD===9,
在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.
②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.
故选:C.【点睛】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.7、D【解析】试题解析:最简二次根式应满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.A选项中被开方数含有分母;B选项被开方数含有能开得尽方的因数4;C选项被开方数含有能开得尽方的因式.只有D选项符合最简二次根式的两个条件,故选D.8、C【解析】
利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.【详解】解:∵点D,E,F分别是AB,BC,AC的中点,,∴四边形ADEF是平行四边形故A正确,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC∴△ABC是等腰三角形故C不一定正确若四边形ADEF是正方形,则AD=AF,∠A=90°∴AB=AC,∠A=90°∴△ABC是等腰直角三角形故D正确故选:C.【点睛】本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.9、A【解析】
首先解不等式组,然后即可判定的值.【详解】,解得,解得由数轴,得故选:A.【点睛】此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.10、C【解析】
根据等腰三角形的腰长=(周长-底边长)÷2,把相关数值代入即可.【详解】等腰三角形的腰长y=(20-x)÷2=-+1.故选C.【点睛】考查列一次函数关系式;得到三角形底腰长的等量关系是解决本题的关键.11、A【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.【详解】解:如图,过点P作PD⊥OB于D,
∵点P是∠AOB的角平分线上一点,PC⊥OA,∴PC=PD=1,即点P到OB的距离等于1.故选:A.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.12、C【解析】
根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.【详解】解:根据黄金比的值得:37×0.1≈23℃.故选C.【点睛】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.二、填空题(每题4分,共24分)13、①②③.【解析】
根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【详解】由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15−9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19−9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000−1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点睛】此题考查一次函数的应用,解题关键在于结合函数图象进行解答.14、【解析】
证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是12cm2,求出AE、EC的长,根据勾股定理求出AC即可.【详解】解:∵四边形AFCE是正方形,∴AF=AE,∠E=∠AFC=∠AFB=90°,∵在Rt△AED和Rt△AFB中,∴Rt△AED≌Rt△AFB(HL),∴S△AED=S△AFB,∵四边形ABCD的面积是12cm2,∴正方形AFCE的面积是12cm2,∴AE=EC=(cm),根据勾股定理得:AC=,故答案为:.【点睛】本题考查了全等三角形的性质和判定,正方形性质,勾股定理等知识点的应用.关键是求出正方形AFCE的面积.15、【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.【详解】解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,−6),∴−6=3k,解得k=−2,∴y=−2x.故答案是:y=−2x.【点睛】此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.16、【解析】
根据四边形的面积与四边形的面积间的数量关系来求其面积.【详解】解:∵四边形中,,,且由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形的面积是.故答案为:.【点睛】本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.17、1【解析】
按统计图中各部分所占比例算出小明的期末数学总评成绩即可.【详解】解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=1(分).故答案为1.18、丁【解析】
首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.【详解】∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的是丁,故答案为:丁.【点睛】此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.三、解答题(共78分)19、(1)证明见解析;(2)30.【解析】
(1)根据全等三角形的性质和判断,结合平行四边形的判定即可得到答案;(2)根据平行四边形的性质即可得到答案.【详解】(1)∵,∴,∴∴,∴∵∴,∴∴四边形是平行四边形.(2)∵,∴∴即∵中∴的周长是.【点睛】本题考查全等三角形的性质和判断、平行四边形的判定和性质,解题的关键是掌握全等三角形的性质和判断、平行四边形的判定和性质.20、(1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.【解析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.
(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.【详解】解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴,解得:.
∴y=﹣6x+120(15<x≤20).
综上所述,可知y与x之间的函数关系式为:..
(2)∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在z=mx+n的图象上,,解得:.
∴.
当x=10时,,y=2×10=20,销售金额为:10×20=200(元);
当x=15时,,y=2×15=30,销售金额为:9×30=270(元).
故第10天和第15天的销售金额分别为200元,270元.
(3)若日销售量不低于1千克,则y≥1.
当0≤x≤15时,y=2x,
解不等式2x≥1,得x≥12;
当15<x≤20时,y=﹣6x+120,
解不等式﹣6x+120≥1,得x≤16.
∴12≤x≤16.
∴“最佳销售期”共有:16﹣12+1=5(天).
∵(10≤x≤20)中<0,∴p随x的增大而减小.
∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克).
故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元【点睛】考核知识点:一次函数在销售中的运用.要注意理解题意,分类讨论情况.21、(1)15;(2),不能实现,见解析.【解析】
(1)根据销售量与售价之间的关系,结合利润=(定价−进价)×销售量,从而列出方程;(2)利用利润=(定价−进价)×销售量列出方程,判断出方程无解即可.【详解】解:(1)由题意得:即,解得:,,∵要使所进的货尽快脱手,∴,答:售价定为15元合适;(2)由题意得:,整理,得x2−41x+451=1.∵△=1611−1811=−211<1,∴该方程无实数解,∴不能完成任务.【点睛】本题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、(1);(1).【解析】
(1)根据正方形的面积求出点B的坐标,进而可求出函数解析式,由点P在函数图象上即可求出结果;(1)由于点P与点B的位置关系不能确定,故分两种情况进行讨论计算即可.【详解】解:(1)∵正方形的面积为4,∴,∴,把代入中,,∴,∴解析式为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论