版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡新区2023届初三下学期第四次质量检查数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.52.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是()A.极差是20 B.中位数是91 C.众数是1 D.平均数是913.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.5.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(
)A.
B.C.
D.6.在△ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DE∥BC的是()A. B. C. D.7.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A. B.C. D.9.菱形的两条对角线长分别是6cm和8cm,则它的面积是()A.6cm2 B.12cm2 C.24cm2 D.48cm210.若△÷,则“△”可能是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.12.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.13.4=.14.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.15.观察下列各等式:……根据以上规律可知第11行左起第一个数是__.16.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.三、解答题(共8题,共72分)17.(8分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.依题意补全图形;求的度数;若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.18.(8分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.19.(8分)解方程组20.(8分)如图,在菱形ABCD中,,点E在对角线BD上.将线段CE绕点C顺时针旋转,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC,求证:.21.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?22.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.23.(12分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.24.已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.2、D【解析】
试题分析:因为极差为:1﹣78=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为,所以D选项错误.故选D.考点:①众数②中位数③平均数④极差.3、C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.4、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.5、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.6、D【解析】
如图,∵AD=1,BD=3,∴,当时,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.7、B【解析】
作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.8、A【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.9、C【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【详解】根据对角线的长可以求得菱形的面积,根据S=ab=×6cm×8cm=14cm1.故选:C.【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.10、A【解析】
直接利用分式的乘除运算法则计算得出答案.【详解】。故选:A.【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】
连接OD,根据圆的切线定理和等腰三角形的性质可得出答案.【详解】连接OD,则∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案为1.考点:切线的性质.12、(1)-2;(2)【解析】
(1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),依题意得:,解得:k=−2.故答案为−2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函数y=−2x+b中x=0,则y=b,∴BO=b;令一次函数y=−2x+b中y=0,则0=−2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE−AO=.∵OE⋅CE=|−4|=4,即=4,解得:b=,或b=−(舍去).故答案为.13、2【解析】试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.∵22=4,∴4=2.考点:算术平方根.14、2或【解析】
分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.【详解】解:(1)当时,∵垂直平分,.(2)当时,过点A作于点,在与中,.故答案为或.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.15、-1.【解析】
观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.16、10,,.【解析】解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.故答案为10,,.三、解答题(共8题,共72分)17、(1)见解析;(2)90°;(3)解题思路见解析.【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由,,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.【详解】解:如图,线段AD绕点A逆时针方向旋转,得到线段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ连接DE,由于为等腰直角三角形,所以可求;Ⅱ由,,可求的度数和的度数,从而可知DF的长;Ⅲ过点A作于点H,在中,由,可求AH、DH的长;Ⅳ由DF、DH的长可求HF的长;Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.故答案为(1)见解析;(2)90°;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.18、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】
(1)根据题意点R与点B重合时t+t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.∵点R与点B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP•sinC=(9﹣t).(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如图3中,当3<t<9时,重叠部分是△PQK.S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.(3)如图3中,①当DC=DP1=3时,易知AP1=3,t=3.②当DC=DP2时,CP2=2•CD•,∴BP2=,∴t=3+.③当CD=CP3时,t=4.④当CP3=DP3时,CP3=2÷,∴t=9﹣=.综上所述,满足条件的t的值为3或或4或.【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.19、【解析】
将②×3,再联立①②消未知数即可计算.【详解】解:②得:③①+③得:把代入③得∴方程组的解为【点睛】本题考查二元一次方程组解法,关键是掌握消元法.20、证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC,,再根据,从而可得,继而得=,由旋转的性质可得=,证明≌,即可证得=;(2)根据菱形的对角线的性质可得,,从而得,由,可得,由(1)可知,可推得,即可得,问题得证.【详解】(1)∵四边形ABCD是菱形,∴,,∵,∴,∴,∵线段由线段绕点顺时针旋转得到,∴,在和中,,∴≌,∴;(2)∵四边形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.21、规定日期是6天.【解析】
本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.22、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年施工项目部春节节后复工复产工作专项方案 (汇编3份)
- 《畜牧软件系统介绍》课件
- 小学一年级100以内数学口算练习题大全
- 《结肠癌护理查房HY》课件
- 《海报设计》课件
- 天津市河北区2023-2024学年高三上学期期末质量检测英语试题
- 能源行业环保意识培训回顾
- 石油行业采购工作总结
- 办公室卫生消毒手册
- 喷灌设备销售工作总结
- 2024时事政治必考试题库附答案(满分必刷)
- DZ∕T 0289-2015 区域生态地球化学评价规范(正式版)
- 公司年会小品《老同学显摆大会》台词剧本手稿
- 护士条例课件
- 工程造价毕业设计总结报告
- 结肠镜检查前肠道准备
- 健康状况与风险评估智慧树知到期末考试答案2024年
- 2023-2024学年统编版高中语文选择性必修中册《屈原列传》检测卷(含答案)
- 创业基础知识竞赛题库及答案
- (高清版)TDT 1063-2021 国土空间规划城市体检评估规程
- 国有企业股权转让规定
评论
0/150
提交评论