版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市崂山区重点中学2023届初三(一模)仿真卷(B卷)数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm22.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(A.y=x2+1 B.y=x3.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是()A. B. C. D.4.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=()A.100° B.50° C.70° D.130°5.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是()A.圆锥 B.圆柱 C.球 D.正方体6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. B. C. D.7.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105 B.5.5×104 C.0.55×105 D.5.5×1058.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD9.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×10810.若关于x的方程=3的解为正数,则m的取值范围是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣11.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.1812.如图,是的直径,弦,,,则阴影部分的面积为()A.2π B.π C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)14.如图,E是▱ABCD的边AD上一点,AE=1215.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.16.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.17.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点MB.点NC.点PD.点Q18.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.20.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(6分)老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.22.(8分)计算:(1)(2)23.(8分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.24.(10分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.25.(10分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.26.(12分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.27.(12分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.2、D【解析】
本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为y=a(x-故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.3、A【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.4、A【解析】
根据圆内接四边形的任意一个外角等于它的内对角求出∠A,根据圆周角定理计算即可.【详解】四边形ABCE内接于⊙O,,由圆周角定理可得,,故选:A.【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).5、C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A.圆锥的主视图可以是三角形也可能是圆,故不符合题意;B.圆柱的主视图可能是长方形也可能是圆,故不符合题意;C.球的主视图只能是圆,故符合题意;D.正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.6、B【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.7、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于BOC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.9、C【解析】
依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.10、B【解析】
解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知关于x的方程=3的解为正数,所以﹣2m+9>0,解得m<,当x=3时,x==3,解得:m=,所以m的取值范围是:m<且m≠.故答案选B.11、C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.12、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD⊥AB,∴(垂径定理),故即可得阴影部分的面积等于扇形OBD的面积,又∵∴(圆周角定理),∴OC=2,故S扇形OBD=即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、10【解析】
作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解决问题.【详解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由题意△QDF,△QCH都是等腰直角三角形,四边形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD−DQ=60−30=30cm,∴FJ=QH=15cm,∵AC=AB−BC=125−25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴两个转盘的最低点F,N距离地面的高度差为=(15+100)-(100+5)=10故答案为:10【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14、4【解析】∵AE=12ED,AE+ED=AD,∴ED=2∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案为4.15、2.【解析】
由tan∠CBD==设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【详解】解:在Rt△BCD中,∵tan∠CBD==,
∴设CD=3a、BC=4a,
则BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
则BD=5a=2,
故答案为2.【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.16、90°.【解析】
根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案为:90°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.17、D【解析】D.试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.考点:1.动点问题的函数图象分析;2.排他法的应用.18、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.【解析】
(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y2=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,∴顶点为D(2,﹣2),当直线l2经过点D时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×+3=如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N在抛物线的对称轴l2:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值为或2.【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.20、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】
利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.21、(1)能,见解析;(2)见解析.【解析】
(1)直接利用菱形的判定方法分析得出答案;
(2)直接利用全等三角形的判定与性质得出EO=FO,进而得出答案.【详解】解:(1)能;该同学错在AC和EF并不是互相平分的,EF垂直平分AC,但未证明AC垂直平分EF,需要通过证明得出;(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAC=∠ECA.∵EF是AC的垂直平分线,∴OA=OC.∵在△AOF与△COE中,,∴△AOF≌△COE(ASA).∴EO=FO.∴AC垂直平分EF.∴EF与AC互相垂直平分.∴四边形AECF是菱形.【点睛】本题主要考查了平行四边形的性质,菱形的判定,全等三角形的判定与性质,正确得出全等三角形是解题关键.22、(1);(2)1.【解析】
(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=;(2)原式.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.23、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)【解析】
(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.【详解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)将D(1,2)代入y=,得2=,∴k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A点坐标为(1,8),设直线OA的解析式为y=kx,把A(1,8)代入得1k=8,解得k=2,∴直线AB的解析式为y=2x,解方程组得或,∴C点坐标为(2,1).24、(1)y=﹣(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】
(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可.【详解】解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),∴m=1,∴二次函数y=a(x+1)1,把点A(﹣1,﹣)代入得a=﹣,则抛物线的解析式为:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,点B(1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.25、(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】
(1)待定系数法即可解题,(2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年车位产权买卖协议格式
- 2024年防水施工劳务协议规范化文件
- 2024新疆企业劳动协议规范化样本
- 2024受托代理事务协议样本
- 2024年专业运营车辆租赁协议模板
- DB11∕T 1514-2018 低效果园改造技术规范
- 单位广告策划与制作服务协议范例
- 2024年公司文秘职务聘用协议模板
- 2024年企业员工全日制劳动协议模板
- 文书模板-《厂房光伏租赁合同》
- VFA的测定方法及标准曲线
- 石灰石粉仓安装方案
- 重大件船舶概况及集装箱岸吊的绑扎
- 危大工程管理概述
- 火电厂工艺流程简介
- 专利管理办法
- 网络环境下小学数学探究教学方法分析
- 七年数学有理数培优专题(共5页)
- 往事依依2 (2)
- 初一生活二三事作文
- 课题3 复卷机控制系统
评论
0/150
提交评论