




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
汽车行业深度报告:智能驾驶产业链梳理1.感知层1.1.车载摄像头:视觉方案的关键车载摄像头是智能驾驶汽车的重要传感器,功能是监控汽车内外环境以辅助驾驶员行驶。按照安装位置的不同可以分为前视、后视、环视、内视等等。从产业链脉络来看,从上游的晶圆、保护膜,到中游的CMOS、DSP,再到下游的模组,基本都具有高技术壁垒,由海外公司主导,在部分领域中国厂商已经开始起步,但是均存在一定的追赶空间。上上游:分为光学镜片、滤光片、保护膜、晶圆。其中“光学镜片+滤光片+保护膜”
是镜头组的上游;晶圆是CMOS和DSP芯片的上游。光学镜片制造原材料有光学玻璃和石英玻璃等,市场竞争激烈。滤光片通常安装在摄像头镜头之后,接近图像传感器表面,是用来选取所需辐射波段的光学器件,可改善图像质量。滤光片基片多为白玻璃、有色玻璃、石英、塑料等。海外供应商包括旭硝子、大真空、日本电波、Optrontec等,主要来自日韩,国内供应商包括、、激埃特等。以海外厂商为主,国内、海泰也有供应能力,但是市场竞争力仍存在一定的上升空间。上游:分为镜头组、胶合材料、CMOS、DSP“镜头组、胶合材料、CMOS”为模组封装商的上游。“DSP”为系统集成商提供DSP。用于车载摄像头的胶合材料主要为UV胶(UltravioletRays),用于模组封装环节。供应商数量较多,市场竞争较为激烈,基本由欧美与日本厂商组成。图像传感器主要分为CCD图像传感器(ChargedCoupledDeviceImageSensor,电荷耦合器件图像传感器)和CMOS图像传感器(ComplementaryMetal-OxideSemiconductorImageSensor,互补金属氧化物半导体图像传感器)两大类,CMOS已经成为图像传感器市场的主导产品。CCD和CMOS图像传感器的主要区别在于二者感光二极管的周边信号处理电路和对感光元件模拟信号的处理方式不同。CCD图像传感器中感光元件接受的模拟信号直接进行依次传递,在感光元件末端将所传递的模拟信号统一输出,并由专门的数模转换芯片及信号处理芯片进行放大、数模转化及后续数字信号处理,CCD图像传感器具有高解析度、低噪声等优点,但生产成本相对较高,主要用于专业相机、摄影机等设备。而CMOS图像传感器中每个感光元件均能够直接集成放大电路和数模转换电路,无需进行依次传递和统一输出,再由图像处理电路对信号进行进一步处理,CMOS图像传感器具有成本低、功耗小等特点,且其整体性能随着产品技术的不断演进而持续提升。由于CMOS图像传感器具有集成度高、标准化程度高、功耗低、成本低、体积小、图像信息可随机读取等一系列优点,从90年代开始被重视并获得大量研发资源,其市场份额占比逐年提升,目前已广泛应用于智能手机、功能手机、平板电脑、笔记本电脑、汽车电子、移动支付、医疗影像等应用领域,成为移动互联网和物联网应用的核心传感器件。目前,全球主要CMOS图像传感器供应商包括三星、索尼、豪威科技、等。根据Frost&Sullivan统计,2012年,全球图像传感器市场规模为99.6亿美元,其中CMOS图像传感器和CCD图像传感器占比分别为55.4%和44.6%。随着CMOS图像传感器设计水平及生产工艺的不断成熟,其性能及成本上的综合优势凸显,逐渐取代了部分CCD图像传感器的市场份额。至2019年,全球图像传感器市场规模增长至198.7亿美元,而CMOS图像传感器占比增长至83.2%。预计到2024年,全球图像传感器市场规模将达到267.1亿美元,实现6.1%的年均复合增长率,而CMOS图像传感器的市场份额也将进一步提升至89.3%。根据Frost&Sullivan统计,2012年,全球CMOS图像传感器出货量为21.9亿颗,市场规模为55.2亿美元。至2019年,全球CMOS图像传感器市场出货量为63.6亿颗,市场规模达到165.4亿美元,分别较2018年度增长了21.4%和29.0%,相对于2012年的年均复合增长率分别达到16.5%和17.0%。得益于智能手机、汽车电子等下游应用的驱动,预计未来全球CMOS图像传感器市场仍将保持较高的增长率,至2024年全球出货量达到91.1亿颗,市场规模将达到238.4亿美元,分别实现7.5%7.6%的年均复合增长率。车载摄像头领域,CMOS是主流传感器。CMOS全球市场份额来看,索尼常年占据了市场40%以上的份额,其CMOS业务主要集中在手机。但是车载应用CMOS的行业龙头为安森美,旗下的紧随其后。根据Yolereport的数据,车载CIS(CIS:CMOS图像传感器)市场,安森美占据龙头地位,市场占有率高达60%,韦尔股份旗下的豪威科技占有率也在不断提升。索尼和三星作为手机CIS的龙头,进入车载市场较晚,正在快速切入。DSP芯片作用是将模拟信号转化为数字信号。DSP芯片头部厂商主要是
(TI)、模拟器件公司(ADI)和摩托罗拉(Motorola),其中德州仪器的市场占有率最高,在DSP芯片市场中处于领先位置。中游:分为模组供应商、系统集成商国外厂商在车载摄像头前装市场优势明显,占主要市场份额,头部公司包括索尼、、法雷奥、麦格纳等等。国内公司逐渐涌现,包括、、舜宇光学、、、苏州智华、辉创电子、同致电子、、豪恩汽电等,但是仍有一定的追赶空间。国内的模组封装厂商主要包括舜宇光学和,两家厂商在手机摄像头模组封装领域发展迅速,已经进入车载摄像头模组封装领域。非上市公司如苏州智华、深圳豪恩、联合光学等模组封装厂商也在发展。整体来看国产厂商与国外头部厂商存在明显差距。下游:整车厂等根据Yole数据,全球平均每辆汽车搭载摄像头数量将从2018年的1.7颗增加至2023年的3颗。我国2020年汽车摄像头平均搭载数量仅有1.3颗,市场空间巨大。根据我们的测算,2025年国内乘用车车载摄像头市场空间约为180亿元。1.2.超声波雷达:逐步实现国产替代,市场格局几乎定型超声波雷达常见的工作频率有40KHz、48KHz、58KHz等,由于频率越高,水平与垂直方向的探测角度就越小,探测面积就越小,因此40KHz为最常见的频率。超声波雷达的探测范围基本在0.1米至3.0米之间,且超声波雷达技术成熟、性价比高,是倒车、停车场景下最优的量产方案选择。超声波雷达的缺点在于测试角度小需要安装多个、测距短、只适用于低速场景等。目前阶段,单车约配备12个超声波雷达
(倒车雷达安装4个超声波传感器,自动泊车系统在倒车雷达系统的基础上再增加4个UPA(超声波驻车辅助,UltrasonicParkingAssistant)和4个APA(自动泊车辅助,AutomaticParkingAssistant)超声波传感器,合计12个)。超声波雷达技术较为成熟,国内外差距主要在于传感器的稳定性、可靠性等方面。目前超声波雷达已逐步实现国产替代,但中国超声波雷达厂商的研发能力较海外对手仍有差距,且超声波雷达市场格局已经定型,中国厂商有望进一步缩小与海外对手的产品力差距,但是发展空间较为有限。1.3.毫米波雷达:22GHz转向77GHz,国内外市场快速增长上游:分为MMIC单片微波集成电路、天线高频PCB板、DSP/FPGA。硬件成本占比约50%MMIC单片微波集成电路:国外:英飞凌Infineon、TI、ST、ADI、NXP国内:清能华波、加特兰微电子、厦门意行半导体、矽杰微电子、南京米勒MMIC包括多种功能电路,如低噪声放大器(LNA)、功率放大器、混频器、检波器、调制器、压控振荡器(VCO)、移相器等。MMIC具有电路损耗低、噪声低、频带宽、动态范围大、功率大、抗电磁辐射能力强等特点。MMIC电路中核心芯片目前基本来自(NXP)、英飞凌、(TI)等海外芯片设计公司。MMIC成本占比达到约25%左右。天线高频PCB板:国外:Rogers、Isola、Schweizer国内:(上市)、(上市)毫米波雷达天线的主流方案是微带阵列,将多根天线集成在PCB基板上实现天线的功能。由于毫米波频率较高,对于电路尺寸精度有一定要求,因此选用高频板材PCB作为印刷电路板。目前雷达天线高频PCB板由、Rogers(罗杰斯)、Isola、Schweizer(施瓦茨,目前沪电股份持有公司19.74%股权)、电工、雅龙等少数公司掌握。国内大多数高频PCB板厂商暂无技术储备,只能根据图纸代加工,元器件仍需国外进口。国内的沪电股份是大陆和博世的PCB板材供应商,目前已就24GHz和77GHz高频雷达用PCB产品与国际顶尖厂商Schweizer开展合作。生益科技于2016年实现了产品出货,年产150万平方米高频PCB板一期项目已于2019年3月试产,预计2020年可实现满产。天线高频PCB板成本占比达到约10%左右。毫米波雷达的核心部件为MMIC(MonolithicMicrowaveIntegratedCircuit,单片微波集成电路)芯片和天线PCB板。的国家对中国采取了技术封锁的手段,核心芯片几乎被TI、英飞凌、NXP、ADI、ST、富士通、安森美、瑞萨等国际半导体公司垄断。基带数字信号处理器(DSP/FPGA):国外:英飞凌Infineon、TI、ST、ADI、瑞萨Renesas国内:无毫米波雷达的数字信号处理功能通过DSP芯片或FPGA芯片实现。高端DSP芯片和FPGA芯片主要被国外企业垄断,DSP芯片供应商有、英飞凌、亚德诺半导体、等公司,FPGA芯片供应商有、阿尔特拉、美高森美、莱迪思等公司。数字信号处理器(DSP/FPGA)成本占比达到约10%左右。中游:主要是毫米波雷达生产企业,软件成本占比达到50%。中游企业主要进行毫米波雷达算法研发。算法需要大量数据支持,研发投入需求较大,是雷达性能的决定性因素之一。根据波的传播理论,频率越高,分辨率越高,穿透力越强。车用毫米波雷达工作频段为21.65-26.65GHz和76~81GHz,主流车的工作频率是在24GHz、77GH、79GHz三个频率段附近。此前,各国给毫米波雷达分配的频段主要集中在24GHz和77GHz,24GHz主要用于中短程探测(SRR、MRR);77GHZ主要用于中远程的探测(LRR)。从行业趋势来看,毫米波雷达的第一个发展方向是从24GHz转向77GHz,79GHz毫米波雷达则为更进一步的发展目标。根据佐思产研雷达月报,国内77GHz毫米波雷达出货量在2019年超过24GHz毫米波雷达.目前,国外已经有79GHz的毫米波雷达,因国内较少开发该频段,79GHz及以上的产品目前只有少量企业已有相关产品,如深圳承泰科技有限公司、浙江杭州智波科技有限公司等。从24GHz转向77GHz的原因:1)从技术角度分析,77GHz毫米波雷达相较24GHz毫米波雷达拥有探测距离更远、分辨率更高、体积更小等优势,能进一步提升产品力。2)从政策角度分析,随着全球移动通信应用继续消耗“较低”频率的频谱,各国也逐渐引导毫米波雷达退出24GHz领域。国内工信部发文,自2024年1月1日起,停止生产或者进口在国内销售的24.25-26.65GHz频段车载雷达设备。日本也已不再使用24GHz车载雷达技术。根据各地区标准组织ETSI和FCC分别设定的时间表,24GHz毫米波雷达在欧洲和美国也被逐步淘汰,更高频率的77GHz和79GHz毫米波雷达将成为主流。根据观察者网引用的第三方数据,中国市场中,24GHz市场主要由法雷奥(Valeo)、海拉(Hella)和博世(Bosch)主导,合计出货量占总出货量的60%以上;77GHz雷达主要由大陆集团(Continental)、博世(Bosch)和德尔福(Delphi)主导,根据OFweek数据,2018年这三家在中国市场占据总出货量份额80%。根据亿欧汽车与中研网的数据,2020年我国毫米波雷达的市场规模为180亿元。根据高工智能汽车研究院数据,2021年1-11月国内上市新车搭载前向/角毫米波雷达上险量为1186.91万颗,同比增长44.55%。国内毫米波雷达产品总体仍处于研制阶段,2018年开始能量产24GHz毫米波雷达,目前24GHz毫米波雷达的产品体系已经相对成熟,供应链已经相对稳定。24GHz的核心芯片射频芯片能从英飞凌、等芯片供应商获得。中国、森思泰克、湖南华纳、安智杰等企业已实现24GHz毫米波雷达产品大规模量化。但英飞凌、飞思卡尔、等芯片商对中国并没有放开77GHz毫米波雷达芯片的供应,因此国内77GHz毫米波雷达的发展较慢。国内布局毫米波雷达领域的公司包括传统零部件企业和初创企业两类。传统零部件公司包括、、等。初创公司包括森思泰克、行易道、安智杰、安智汽车、承泰科技、楚航科技、川速微波等。部分企业已实现24GHz和77GHz毫米波雷达传感器量产。相较于激光雷达、摄像头等,毫米波雷达具备全天候全天时的探测能力,即使在雨雪、尘雾等恶劣环境条件下依旧可以正常工作,且毫米波雷达直接测量距离和速度,对目标运动状态的检测更为方便。我们认为国内外毫米波雷达市场仍将保持快速增长:1)单车装载数量提升:基于其技术优势,我们认为毫米波雷达的单车搭载量将随着汽车智能化的发展而不断攀升。根据中国产业信息网数据,2015年,中国车载毫米波雷达销量为180万颗,平均每12辆车配装1颗。现阶段大多数智能化程度更高的汽车采用4个短距毫米波雷达+1个长距毫米波雷达的装配模式,如小鹏P5、蔚来ES8和ET7均装配5颗毫米波雷达。2)单价提升:从单价来看,24GHz毫米波雷达在500元左右,而77GHz的毫米波雷达系统在1000元左右。由于24GHz将被逐渐替换为77GHz、79GHz,因此单车价值进一步提升。3)汽车智能化渗透率提升:目前L2渗透率较低,2020年国内约为15%。汽车智能化为大势所趋,我们认为L2以上的渗透率将逐年稳定、快速提升。渗透率的提升将强势拉动毫米波雷达需求。1.4.激光雷达:迎来量产元年,国产有望弯道超车上游:主要由激光器、探测器、主控芯片、模拟芯片及光学部件5个部件组成。芯片(主控芯片FPGA及模拟芯片)领域国内外差距比较大,国外厂商占据主要市场;
光学部件、激光器与探测器等领域,国内相关公司可以做到国产替代,可实现灵活定制,成本优势比较明显。1激光器(属于发射系统,分为固体激光器、半导体激光器、气体激光器等):OSRAM
(欧司朗)、AMS(艾迈斯半导体)、lumentum(鲁门特姆)、瑞波光电子(
(上市)持股9.13%)、纵慧芯光(VCSEL芯片,是激光雷达的光源,华为投资)、(上市)激光器实现发射光束的光源作用。激光器从发射维度看可以分为两大类:边发射(EEL)和垂直腔面发射(VCSEL)。EEL作为探测光源具有高发光功率密度的优势,但EEL激光器因为其发光面位于半导体晶圆的侧面,使用过程中需要进行切割、翻转、镀膜、再切割的工艺步骤,往往只能通过单颗一一贴装的方式和电路板整合,而且每颗激光器需要使用分立的光学器件进行光束发散角的压缩和独立手工装调,极大地依赖产线工人的手工装调技术,生产成本高且一致性难以保障。垂直腔面发射激光器(VerticalCavitySurfaceEmittingLaser,VCSEL)其发光面与半导体晶圆平行,具有面上发光的特性,其所形成的激光器阵列易于与平面化的电路芯片键合,在精度层面由半导体加工设备保障,无需再进行每个激光器的单独装调,且易于和面上工艺的硅材料微型透镜进行整合,提升光束质量。传统的VCSEL激光器存在发光密度功率低的缺陷,导致只在对测距要求近的应用领域有相应的激光雷达产品(通常小于50m)。近年来国内外多家VCSEL激光器公司纷纷开发了多层结VCSEL激光器,将其发光功率密度提升了5~10倍,这为应用VCSEL开发长距激光雷达提供了可能。结合其平面化所带来的生产成本和产品可靠性方面的收益,VCSEL未来将有望逐渐取代EEL。目前市场主要参与者仍以海外厂商为主,包括OSRAM(欧司朗)、AMS(艾迈斯半导体)、Lumentum(鲁门特姆)等;国产厂商包括深圳瑞波光电子有限公司、常州纵慧芯光半导体科技有限公司等。2探测器:sony、FirstSensor、Hamamatsu滨松光子、ONSemiconductor安森美、量芯集成、灵明光子(小米投资)、南京芯视界(SPAD,华为投资)。从竞争格局来看,目前探测器领域仍以国外厂商为主。探测器属于接收系统,分为SiPM探测器(硅光电倍增管)、APD探测器(雪崩光电二极管)、SPAD探测器(单光子雪崩二极管)等。单光子器件(SPAD)具有极强的感光能力,在生物医学的荧光探测领域和核磁影像领域已经取得了广泛的应用,然而由于硅材料对激光雷达所采用的近红外光波段的吸收系数较弱,导致在激光雷达接收端的测量灵敏度不及当前在激光雷达中广泛使用的线性雪崩二极管探测器APD。近年来,因为激光雷达行业的兴起,国内外多家探测器公司在不断优化单光子器件在近红外波段的量子效率,在实际探测灵敏度方面已经逐渐超越了APD。未来几年内,随着设计和工艺的进一步优化,单光子探测器对APD性能的优势将越发明显。3FPGA(信息处理):Intel、Xilinx(两个海外巨头)、(上市)、智多晶(小米投资)4模拟芯片:TI、ADI
半导体、矽力杰、(上市)5光学部件:5.1旋转电机&扫瞄镜(属于扫描系统,也叫扫描器)中游:中游大部分的激光雷达厂商主要做硬件集成的工作,并添加自研的算法,进行封装后卖给下游厂商。机械式:Velodyne、Valeo、Waymo、Ouster、禾赛科技、速腾聚创、镭神智能半固态-转镜式:Velodyne、法雷奥、Luminar、IBEO、Innovusion、禾赛科技、镭神智能、锐驰智光、Livox半固态-MEMS:Luminar、Innoviz、禾赛科技、速腾聚创、一径科技固态-OPA(光学相控阵):
Quanergy、力策科技固态-FLASH:Ouster、IBEO、LuminWave、AnalogPhotonicsFMWC:Blackmore、Aeva、Scantinel、Photonics、Strobe、光勺科技激光雷达按照测距方法可以分为飞行时间(TimeofFlight,ToF)测距法、基于相干探测的FMCW测距法、以及三角测距法等,其中ToF与FMCW能够实现室外阳光下较远的测程(100~250m),是车载激光雷达的优选方案。ToF是目前市场车载中长距激光雷达的主流方案。大部分ToF激光雷达产品采用分立器件,即发射端使用边发射激光器(EdgeEmittingLaser,EEL)配合多通道驱动器、接收端使用线性雪崩二极管探测器(AvalanchePhotodiode,APD)配合多通道跨阻放大器(Trans-ImpedanceAmplifier,TIA)的方案。ToF激光雷达系统主要包括发射模块、接收模块、控制及信号处理模块和扫描模块(如有)。未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。机械式激光雷达:其发射系统和接收系统存在转动,通过不断旋转发射头,将速度更快、发射更准的激光从“线”变成“面”,并在竖直方向上排布多束激光,形成多个面,达到动态扫描并动态接收信息的效果。传统机械式激光雷达要实现更高线束,需要增加发射模块与接收模块的数量。但是由于种种缺点,机械式较难应用在规模量产车型当中。优点:发展时间久,技术较为成熟缺点:成本较高(64线Velodyne机械式激光雷达价格在7万美元以上)、旋转部件体积、重量庞大,导致机械零部件寿命不长(约1000-3000小时)+机械旋转部件在行车环境下的可靠性不高+装配困难等。混合固态(半固态)激光雷达在产品外形上不存在机械旋转的部件,但内部实际存在小巧的机械旋转扫描系统。半固态分为转镜方案和MEMS方案。转镜式激光雷达:通过反射镜面围绕圆心不断旋转,将激光反射到不同的角度完成对前方一定角度内的扫描,激光发生器本身固定不动。在转镜方案中,存在一面扫描镜(一维转镜)和一纵一横两面扫描镜(二维转镜)两种技术路线。一维转镜线束与激光发生器数量一致,而二维转镜可以实现等效更多的线束,在集成难度和成本控制上存在优势。相较于同为混合固态激光雷达的MEMS微振镜激光雷达,它在功耗、散热等方面有着更大优势。不过转镜方案与MEMS微振镜一样存在信噪比低,和有效距离短,FOV视场角受限等问题。转镜式方案中有法雷奥Scala的成功案例,是已经通过车规认证并实现了前装量产的技术方案。MEMS激光雷达:MEMS扫描镜内部集成了“可动”的微型镜面,MEMS扫描镜兼具“固态”和“运动”两种属性,故称为“混合固态”。MEMS激光雷达可以直接在硅基芯片上集成体积十分精巧的MEMS微振镜来代替传统的机械式旋转装置,在驱动电路的带动下,MEMS振镜产生高频旋摆,而激光源是固定不动的,打在振镜上的电磁波就会在振镜的转动下,快速扫描镜头前方的环境。这一变化带来的最大优点在于本身不用再大幅度地进行旋转,可以有效降低整个系统在行车环境出现问题的几率。另外,主要部件运用芯片工艺生产之后,量产能力也得以大幅度提高,有利于降低激光雷达的成本,可以从上千乃至上万美元降低到数百美元。优点:准确度高,MEMS微振镜振动小,可以精确控制偏转角度,而机械激光雷达只能调整马达转速;成本低,对激光器和探测器的数量需求明显减少;体积减小,不需要笨重的马达缺点:仍然存在微振镜的振动,此结构特性会影响整个部件的寿命;激光扫描受微振镜面积限制,与其他技术路线在扫描范围上有一定差距;只用一组发射激光和接收装置,信号光功率远低于机械激光雷达;接收端的收光孔径非常小,远低于机械激光雷达,而光接收峰值功率与接收器孔径面积成正比,因此意味着信噪比的降低,也意味着有效距离的缩短。固态激光雷达:是完全没有移动部件的激光雷达。且由于装配调试可以实现自动化,若能实现量产则可以大幅降低成本。固态激光雷达的技术路线尚未定型,目前分为OPA固态激光雷达和Flash固态激光雷达。优点:不存在旋转的机械结构,所有的激光探测水平和垂直视角都是通过电子方式实现的,因此提高了耐用性;数据采集速度快,分辨率高,对于温度和振动的适应性强;通过波束控制,探测点可以任意分布,这是机械式激光雷达无法实现的。OPA(opticalphasedarray光学相控阵技术)激光雷达:运用相干原理,采用多个光源组成阵列,通过控制各光源发光时间差,通过调节发射阵列中每个发射单元的相位差,来控制输出的激光束的方向,合成具有特定方向的主光束。OPA仍处于研发阶段优点:相比于MEMS,没有任何机械部件,结构相对简单,精度高,体积小,扫描速度快缺点:易形成旁瓣,影响光束作用距离和角分辨率,使激光能量被分散。光学相控阵要求阵列单元尺寸必须不大于半个波长,阵列单元尺寸小于500nm,对加工精度要求高,扫描角度有限,探测距离很难做到很远,接收端方案薄弱,信噪比较差。Flash固态激光雷达:属于非扫描式雷达,发射面阵光,是以2维或3维图像为重点输出内容的激光雷达。Flash原理是快闪,不像MEMS或OPA的方案进行扫描,而是短时间直接发射出一大片覆盖探测区域的激光,再以接收器对环境周围图像进行绘制。Flash是目前较为主流的技术方案,目前高性能Flash激光雷达主要是IBEO和OUSTER。优点:发射端方案较成熟,成本较低;没有延迟,扫描速度快;体积小,稳定性高缺点:采用单脉冲测量,单脉冲需要较高的能量,峰值功率能达到上百千瓦至兆瓦级别,需要搭载固体激光器,而固体激光器成本很高,且闪光能量可能伤害人眼安全,受严格限制。因为目前VCSEL的效率和指向性,让Flash激光雷达有效距离和分辨率都不及前两类。FMCW激光雷达:主要通过发送和接收连续激光束,把回光和本地光做干涉,并利用混频探测技术来测量发送和接收的频率差异,再通过频率差换算出目标物的距离。FMCW按光波的相干方式,可分为线性调频和编码调相两种。相较于TOF激光雷达,FMCW存在四个显著的优势。第一,抗干扰能力很强,不会受到环境光的干扰。首先是因为FMCW基于相干原理,它只能接收到自己发出去的光,其次是它内置的光源的强度要比反射进来的阳光强度高至少三个数量级,阳光对它的影响基本可以忽略不计,再者,其滤波片的带宽在0.01纳米以内,而TOF激光雷达的滤波片带宽有20-30纳米。第二,信噪比很高。在FMCW激光雷达中,除了激光器所发出的信号光外,还有经过光束分束器的本振光,信号光的回波和本振光一同耦合到光探测。除了接收到光信号光功率,外本地震荡光功率也一同与背景噪声相竞争,结果就压抑了噪声。远距离激光雷达往往会牺牲FOV来追求更长的探测距离,这其实对信噪比要求比较高,因此,在技术成熟后,FMCW会是远距离感知更好的选择。第三,FMCW可获取每个像素点的速度维数据,这不仅延长了有效探测距离,还减少了后端处理对算力的要求。第四,可实现更高程度的“芯片化”。不仅信号处理、激光器、探测器等可以进行芯片化,扫描部件可以基于硅光技术芯片化,光学镜头也有可能被芯片化,在最理想的情况下,扫描模块还可跟收发模块(激光器+探测器)集成到同一个芯片上。激光雷达发展的大趋势是机械式向半固态再向固态发展,目前的技术阶段正从机械式向半固态转变。目前半固态中MEMS和转镜的路线正在竞争,MEMS是当前市场上主流方案。长远来看,固态应是未来的发展方向。激光雷达的市场规模正在加速扩大。从整个激光雷达的市场空间来看,根据沙利文的统计及预测,2025年中国激光雷达市场规模将达到43.1亿美元,全球市场规模为135.4亿美元。从2025年数据细分来看,无人驾驶市场
(Robotaxi/Robotruck)激光雷达市场规模预计为35亿美元,高级辅助驾驶激光雷达市场预计达到46.1亿美元,服务型机器人激光雷达市场达到7亿美元,车联网激光雷达市场预计超过45亿美元。从车载与工业领域的激光雷达空间来看,根据亿欧汽车的数据,2020年我国车载激光雷达的市场
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级下美术教学设计-光的魅力-人教新课标
- 本土文化的地理特色试题及答案
- 咽峡炎的护理查房
- 水资源综合利用规划计划
- 行业新规对工作的影响计划
- 增加中小学生阅读活动计划
- 学校美术补习班开设方案计划
- 借助社交媒体增强品牌互动计划
- 生物学习动机的激发策略计划
- 转型升级中的生产管理挑战计划
- 2025年国家公务员录用考试公共基础知识预测押题试卷及答案(共七套)
- 2025-2030中国儿童服装行业市场发展分析及投资前景预测研究报告
- 部编版语文教材培训讲座-口语交际
- 2025年全国中小学生安全教育日专题
- 2025年工程力学笔试试题及答案
- 2025年电子设备装接工岗位职业技能资格证考试题(附答案)
- 2025年河南航空港发展投资集团有限公司社会招聘45人笔试参考题库附带答案详解
- DB37T 5157-2020 住宅工程质量常见问题防控技术标准
- GB_T 37851-2019 玻璃容器 小口瓶标准公差(高清版)
- 电度表检验报告格式(共4页)
- 烟气超低排放改造和增设脱硝项目资金申请报告写作模板定制
评论
0/150
提交评论