北师大版八年级数学上册《估算》示范公开课教学课件_第1页
北师大版八年级数学上册《估算》示范公开课教学课件_第2页
北师大版八年级数学上册《估算》示范公开课教学课件_第3页
北师大版八年级数学上册《估算》示范公开课教学课件_第4页
北师大版八年级数学上册《估算》示范公开课教学课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4估算北师大版八年级数学上册1.会估算一个无理数的大致范围,能通过估算检验计算结果的合理性,形成估算意识.2.掌握估算方法,会比较两个实数的大小,并能利用估算解决一些简单的问题.3.经历实际问题的解决过程,能结合具体情况进行估算,判断计算结果的对错,并对结果的合理性作出解释.4.通过估算的学习,使学生认识到在现实生活中估算的用处甚广,激发学生学习数学的兴趣,发展学生的数感,培养学生日后解决实际问题的能力.学习目标估算重点难点准备好了吗?一起去探索吧!复习回顾

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根或二次方根.记作平方根立方根

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根.记作

.a为非负数a可取任何数平方根和立方根中被开方数的取值有限制吗?复习回顾求下列各式的值.

5

2

想一想

某地开辟了一块长方形荒地,新建一个环保主题的公园.已知这块荒地的长是宽的2倍,它的面积为400

000m2.(1)公园的宽大约是多少?它有1000

m吗?因此,公园的宽没有1000米.公园的面积S=2000×1000=2000000(m2)2000000>400000解:因为荒地的长是宽的2倍,假设宽是1000

m,则长是2000

m.S=400000m2想一想S=400

000m2因此,公园的宽大约是450米.解:设宽为x米,则长为2x米.荒地面积

S=2x·x=2x2=400

000解得:x=≈450分析:求无理数

的大致取值.x2=2000002xx

某地开辟了一块长方形荒地,新建一个环保主题的公园.已知这块荒地的长是宽的2倍,它的面积为400

000m2.(2)如果要求误差小于10m,它的宽大约是多少?想一想S=800m2r解:设圆形花圃的半径为r.则花圃面积

S=πr2=800

解得r=

800除以3.14约等于255,大约为16的平方.所以圆形花圃的半径大约是16米.分析:求无理数

的大致取值.

某地开辟了一块长方形荒地,新建一个环保主题的公园.已知这块荒地的长是宽的2倍,它的面积为400

000m2.(3)该公园中心有一个圆形花圃,它的面积是800m2,你能估计它的半径吗?(精确到1m)议一议问题:下面的计算结果正确吗?你是怎么判断的?解:因为

0.0662=0.004356,所以

不正确.

因为

963=884736,所以

不正确.

因为

60.42=3648.16,所以

不正确.

通过“精确计算”可比较两个数的大小.议一议问题:下面计算结果正确吗?你是怎么判断的?解:∵60.4>60,602=3600,通过“估算”也可比较两个数的大小.以上计算结果都不正确.议一议你能估算

的大小吗?(结果精确到1)解:因为729<900<1000,所以.即9<<10,

的整数部分是9.乘方和开方为互逆运算.乘方和开方的运算,有助于我们对于无理数的取值进行估算.又因为

,所以估算无理数

的大小.(结果精确到0.1)解:因为

,即

所以

的整数部分是3.

因为

,即探究

又因为

更接近,所以

估算法确定无理数的大小

先平方运算或立方运算;归纳采用“夹逼法”,即两边无限逼近,逐级夹逼,首先确定其整数部分的取值范围,再根据要求确定小数部分.“精确到”与“误差小于”意义不同:如精确到1

m是四舍五入到个位,答案唯一;误差小于1

m,答案在真值左右1

m都符合题意,答案不唯一.12注意例

生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的

,则梯子比较稳定.现有一长度为6m的梯子,当梯子稳定摆放时,它的顶端能达到5.6m高的墙头吗?典型例题6米分析梯子的长度、梯子底端离墙的距离和梯子顶端能达到的高度构成直角三角形,利用勾股定理求出梯子顶端能达到的高度即可.例

生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的

,则梯子比较稳定.现有一长度为6m的梯子,当梯子稳定摆放时,它的顶端能达到5.6m高的墙头吗?解:设梯子稳定摆放时的高度为x

m,此时梯子底端离墙的距离恰为梯子长度的

,根据勾股定理,有因为5.62=31.36<32,所以

>5.6.典型例题6米因此,当梯子稳定摆放时,它的顶端能达到5.6m高的墙头.议一议通过估算,你能比较

的大小吗?你是怎样想的?与同伴交流.

小明是这样想的:

的分母相同,只要比较它们的分子就可以了.因为

,所以

,因此.

你认为小明的想法正确吗?小明的想法正确议一议说说你的想法吧!归纳总结用估算法比较无理数大小的常用结论:

a>b≥0

a>b

若a,b都为正数:a2>b2a>b随堂练习A1.估算

-3的值()A.在1和2之间

B.在2和3之间C.在3和4之间

D.在4和5之间解析:因为42<19<52,所以4<<5,所以1<-3<2.估计一个有理数的算术平方根的近似值,必须先判断这个有理数位于哪两个数的平方之间.随堂练习2.一块面积为10

m2的正方形草坪,其边长()

A.小于3

m

B.等于3

m

C.在3

m与4

m之间

D.大于4

mC3.已知

则下列大小关系正确的是

()

A.a>b>c

B.c>b>a

C.b>a>c

D.a>c>b

A随堂练习解析:

4.比较2,

的大小,正确的是()A.

B.C.

D.A随堂练习5.通过估算比较下列各组数的大小.解:

(1)因为5>4,所以

,所以(2)因为6>4,所以

,所以估算法确定无理数大小的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论