甘肃省武威第十九中学2022-2023学年数学八下期末考试试题含解析_第1页
甘肃省武威第十九中学2022-2023学年数学八下期末考试试题含解析_第2页
甘肃省武威第十九中学2022-2023学年数学八下期末考试试题含解析_第3页
甘肃省武威第十九中学2022-2023学年数学八下期末考试试题含解析_第4页
甘肃省武威第十九中学2022-2023学年数学八下期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,菱形中,对角线、相交于点,、分别是边、的中点,连接、、,则下列叙述正确的是()A.和都是等边三角形B.四边形和四边形都是菱形C.四边形与四边形是位似图形D.且2.如图,在矩形ABCD中,AD=+8,点E在边AD上,连BE,BD平分∠EBC,则线段AE的长是()A.2 B.3 C.4 D.53.函数y=x+1中自变量x的取值范围是()A.x≥﹣1

B.x≤﹣1

C.x>﹣1

D.x<﹣14.已知点都在反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定5.如图,点为菱形边上的一个动点,并沿→→→的路径移动,设点E经过的路径长为,的面积为,则下列图象能大致反映与的函数关系的是()A. B.C. D.6.若分式有意义,则x满足的条件是()A.x≠1的实数 B.x为任意实数 C.x≠1且x≠﹣1的实数 D.x=﹣17.多项式与多项式的公因式是()A. B. C. D.8.一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是()A.88B.90C.90.5D.919.下列各组数中是勾股数的为()A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、910.王芳同学周末去新华书店购买资料,右图表示她离家的距离(y)与时间(x)之间的函数图象.若用黑点表示王芳家的位置,则王芳走的路线可能是A. B. C. D.11.若kb<0,则一次函数的图象一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限12.在同一平面直角坐标系中,函数与的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.已知关于x的不等式组x-a≥04-14.把二次根式化成最简二次根式得到的结果是______.15.分解因式:.16.把直线沿轴向上平移5个单位,则得到的直线的表达式为_________.17._______18.若,则=______.三、解答题(共78分)19.(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.20.(8分)如图所示,在ΔABC中,点D在BC上,CF⊥AD于F,且CF平分∠ACB,AE=EB.求证:EF=121.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标_________.22.(10分)先化简,再求值:其中23.(10分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.24.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点;(1)在第一个图中,以格点为端点,画一个三角形,使三边长分别为2、、,则这个三角形的面积是_________;(2)在第二个图中,以格点为顶点,画一个正方形,使它的面积为10。25.(12分)先化简,再求值:,其中x=26.如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据菱形的性质及直角三角形的性质即可判断.【详解】∵、分别是边、的中点,AC⊥BD,∴MO=AM=BM=AB=NO,∴和都是等腰三角形,A错误;∵MN=BD=BO=DO,∴四边形和四边形都是平行四边形,B错误;由AM=AB,AO=AC,AN=AD,∴四边形与四边形是位似图形,正确;∵、O分别是边、AC的中点∴,但是不一定等于CO,故D错误.故选C【点睛】此题主要考查菱形的性质,解题的关键是熟知中位线定理与直角三角形的性质.2、B【解析】

根据二次根式的性质得到AB,AD的长,再根据BD平分∠EBC与矩形的性质得到∠EBD=∠ADB,故BE=DE,再利用勾股定理进行求解.【详解】解:∵AD=+8,∴AB=4,AD=8∵BD平分∠EBC∴∠EBD=∠DBC∵AD∥BC∴∠ADB=∠DBC∴∠EBD=∠ADB∴BE=DE在Rt△ABE中,BE2=AE2+AB2,∴(8﹣AE)2=AE2+16∴AE=3故选:B.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知勾股定理的应用.3、A【解析】

根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x+1⩾0,解得x⩾-1.故选:A.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4、B【解析】分析:根据反比例函数的系数k的取值范围,判断出函数的图像,由图像的性质可得解.详解:∵反比例函数∴函数的图像在一三象限,在每一个象限,y随x增大而减小∵-3<-1∴y1<y2.故选B.点睛:此题主要考查了反比例函数的图像与性质,关键是利用反比例函数的系数k确定函数的图像与性质.5、D【解析】

分段来考虑:点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【详解】点E沿A→B运动,△ADE的面积逐渐变大,设菱形的边长为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a-x)•sinβ,故选D.【点睛】本题主要考查了动点问题的函数图象.注意分段考虑.6、A【解析】

直接利用分式有意义的条件得出:x﹣1≠0,解出答案.【详解】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.∴x满足的条件是:x≠1的实数.故选A.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.7、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解8、B【解析】

先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【详解】将小明所在小组的5个同学的成绩重新排列为:88、90、90、91、97,所以这组数据的中位数为90分,故选B.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、C【解析】

根据勾股定理的逆定理分别对各组数据进行检验即可.【详解】解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;B.∵42+52=41≠62=36,∴不是勾股数,故B错误;C.∵32+42=25=52=25,∴是勾股数,故C正确;D.∵72+82=113≠92=81,∴不是勾股数,故D错误.故选C.【点睛】本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.10、D【解析】分析:由图知:在行驶的过程中,有一段时间小王到家的距离都不变,且最后回到了家,可根据这两个特点来判断符合题意的选项.

详解:由图知:在前往新华书店的过程中,有一段时间小王到家的距离都不变,故可排除B和C,由最后回到了家可排除A,所以只有选项D符合题意;

故选D.

点睛:本题主要考查函数的图象的知识点,重在考查了函数图象的读图能力.能够根据函数的图象准确的把握住关键信息是解答此题的关键.11、D【解析】

根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系12、C【解析】

分别讨论k>0和k<0时一次函数和二次函数的图像即可求解.【详解】当k>0时,函数y=kx+k的图象经过一、二、三象限;函数y=2x2+kx的开口向上,顶点坐标在x轴的下部,y轴左部;当k<0时,函数y=kx+k的图象经过二、三、四象限;函数y=2x2+kx的开口向上,顶点坐标在x轴的下部,y轴右部;故C正确.故选C.【点睛】本题考查的是一次函数和二次函数的图像,熟练掌握两者是解题的关键.二、填空题(每题4分,共24分)13、-3<a≤-1【解析】

先表示出不等式组的解集,再由整数解的个数,可得b的取值范围.【详解】由x-a≥04-x>1,

则其整数解为:-1,-1,0,1,1,

∴-3<a≤-1.

故答案为-3<a≤-1.【点睛】本题考查解一元一次不等式组和一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.14、3【解析】

根据二次根式的性质进行化简即可.【详解】解:==3.故答案为:3.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.15、.【解析】

先把式子写成x2-22,符合平方差公式的特点,再利用平方差公式分解因式.【详解】x2-4=x2-22=(x+2)(x-2).故答案为.【点睛】此题考查的是利用公式法因式分解,因式分解的步骤为:一提公因式;二看公式.16、【解析】

根据上加下减,左加右减的法则可得出答案.【详解】解:沿y轴向上平移5个单位得到直线:,即.故答案是:.【点睛】本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.17、2019【解析】

直接利用平方差公式即可解答【详解】=2019【点睛】此题考查平方差公式,解题关键在于掌握运算法则18、1【解析】

根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案【详解】∵∴∴∴故答案为1.【点睛】本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.三、解答题(共78分)19、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】

(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,

∴CE=CD=6,

∵四边形ABCD,四边形CEFG是正方形,

∴DF=CE=AD=AB=6,

∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;

∴∠CBD=∠GCF=25°,

∴BD∥CF,

∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S正方形ABCD,证明:连接CF.∵四边形ABCD和四边形CEFG均为正方形;∴∠CBD=∠GCF=25°,∴BD∥CF,∴S△BDF=S△BDC=S正方形ABCD;(3)由(2)知S△BDF=S△BDC,∴S△BCH=S△DFH=,∴,∴,,∴,∴EF=2,∴正方形CEFG的边长为2.【点睛】本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.20、详见解析【解析】

首先根据已知易证ΔACF≅ΔDCF,可得F是AD中点,再根据三角形的中位线定理可得EF=1【详解】证明:∵CF⊥AD,CF平分∠ACB,∴∠AFC=∠DFC=90°,∠ACF=∠DCF,又∵CF=CF,∴ΔACF≅ΔDCF(ASA),∴AF=DF.又∵AE=EB,∴EF=1【点睛】此题主要考查了三角形中位线定理,以及全等三角形的判定和性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.21、(1)见解析;(2)见解析,(-4,2)【解析】

(1)利用网格特点和旋转的旋转画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;

(2)延长OA到A2使A2A=OA,则点A2为点A的对应点,同样方法作出B、C的对应点B2,C2,从而得到△A2B2C2,然后写出A2的坐标.【详解】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所作,点A2的坐标分别为(-4,2)【点睛】此题主要考查了旋转变换以及位似变换,正确利用旋转的性质得出对应点位置是解题关键.位似变换:利用以原点为位似中心的对应点的坐标之间的关系写出所求图形各顶点坐标,然后描点即可.22、【解析】

先去括号,再把除法统一为乘法把分式化简,再把数代入.【详解】解:原式当时,原式.【点睛】本题考查分式的混合运算,通分、分解因式、约分是关键.23、(1)5(2)y=﹣120x+600(3≤x≤5)(3)【解析】

(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.【详解】解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,∴行驶的时间分别为:=3小时,则=2小时,∴t=3+2=5;∴轿车从乙地返回甲地时的速度是:=120(km/h);(2)∵t=5,∴此点坐标为:(5,0),设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,∴,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论