![四川省成都市天府七中学2023年中考三模数学试题含解析_第1页](http://file4.renrendoc.com/view/10e116f89e5551b7826b109cc4ffce13/10e116f89e5551b7826b109cc4ffce131.gif)
![四川省成都市天府七中学2023年中考三模数学试题含解析_第2页](http://file4.renrendoc.com/view/10e116f89e5551b7826b109cc4ffce13/10e116f89e5551b7826b109cc4ffce132.gif)
![四川省成都市天府七中学2023年中考三模数学试题含解析_第3页](http://file4.renrendoc.com/view/10e116f89e5551b7826b109cc4ffce13/10e116f89e5551b7826b109cc4ffce133.gif)
![四川省成都市天府七中学2023年中考三模数学试题含解析_第4页](http://file4.renrendoc.com/view/10e116f89e5551b7826b109cc4ffce13/10e116f89e5551b7826b109cc4ffce134.gif)
![四川省成都市天府七中学2023年中考三模数学试题含解析_第5页](http://file4.renrendoc.com/view/10e116f89e5551b7826b109cc4ffce13/10e116f89e5551b7826b109cc4ffce135.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A. B.C. D.2.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.143.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.844.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B. C. D.25.已知a为整数,且<a<,则a等于A.1 B.2 C.3 D.46.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生 D.最喜欢田径的人数占总人数的10%7.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°9.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=33010.计算x﹣2y﹣(2x+y)的结果为()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.12.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)13.因式分解:x2y-4y3=________.14.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.15.二次函数y=x2-2x+1的对称轴方程是x=_______.16.若关于x的方程=0有增根,则m的值是______.三、解答题(共8题,共72分)17.(8分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.18.(8分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.(1)若A、B移动到如图所示位置,计算的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.19.(8分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.(1)A点坐标为;B点坐标为;F点坐标为;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.20.(8分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)21.(8分)如图,在正方形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F.求证:DF2=EF•BF.22.(10分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.23.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0≤x<2,则:y=S梯形ECDG-S△EFC-S△GDF=,当点F在DA上运动时,2<x≤4,则:y=,综上,只有A选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.2、C【解析】
根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC•PE=×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=S四边形AFPG=,∴=×AG•PG,∴AG=,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.3、B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理全面积为:故该几何体的全面积等于1.故选B.4、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.5、B【解析】
直接利用,接近的整数是1,进而得出答案.【详解】∵a为整数,且<a<,∴a=1.故选:.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.6、C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A.最喜欢足球的人数最多,故A选项错误;B.最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C.全班共有12+20+8+4+6=50名学生,故C选项正确;D.最喜欢田径的人数占总人数的=8%,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、A【解析】试题解析:扇形的弧长为:=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.8、B【解析】
由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.9、D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.10、C【解析】
原式去括号合并同类项即可得到结果.【详解】原式,故选:C.【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、5.【解析】
试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.12、π.【解析】
如图,连接OE,利用切线的性质得OD=3,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=CD=3,OE⊥BC,∴四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=32﹣,∴阴影部分的面积,故答案为π.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.13、y(x++2y)(x-2y)【解析】
首先提公因式,再利用平方差进行分解即可.【详解】原式.故答案是:y(x+2y)(x-2y).【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14、1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15、1【解析】
利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.【详解】∵-=-=1,∴x=1.故答案为:1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.16、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.三、解答题(共8题,共72分)17、(1)反比例函数的解析式为y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】试题分析:(1)把点B(3,﹣1)带入反比例函数中,即可求得k的值;(2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;(3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.试题解析:(1)∵B(3,﹣1)在反比例函数的图象上,∴-1=,∴m=-3,∴反比例函数的解析式为;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y=,∴D(-2,);y1>y2时x的取值范围是-2<x<0或x>;(3)∵A(1,a)是反比例函数的图象上一点,∴a=-3,∴A(1,-3),设直线AB为y=kx+b,,∴,∴直线AB为y=x-4,令y=0,则x=4,∴P(4,0)18、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.【解析】
(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,∴a+b=2故a+b的值为2.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2∴b|a|=b+a=23=3故a的值为3,b|a|的值为3.(1)∵点A不动,点B向右移动15.1个单位长∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【点睛】本题主要考查了数轴,关键在于数形结合思想.19、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.【详解】(1)针对于抛物线,令x=0,则,∴,令y=0,则,解得,x=1或x=3,∴,综上所述:,,;(2)由(1)知,,,∵BM=FM,∴,∵,∴直线AC的解析式为:,联立抛物线解析式得:,解得:或,∴,如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,∴,解得:,∴,过H作l∥AC,∴直线l的解析式为,联立抛物线解析式,解得,∴,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,∴,,∵DG⊥x轴,∴DG∥OM,∴,∴,即,∴,同理可得∴,∴,即,∴,∴直线DE的解析式为,∴直线DE必经过一定点.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.20、(1)详见解析;(2)①详见解析;②.【解析】
(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小值.∴△APB的周长的最小值AB+AB''=+3故答案为+3【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.21、见解析【解析】
证明△FDE∽△FBD即可解决问题.【详解】解:∵四边形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共边,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四边形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF•BF.【点睛】本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.22、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工伤延期申请书
- 励志之星申请书
- 保障住房申请书范文
- 新建房屋申请书
- 师范生实习申请书
- 大学生创新创业项目画图
- 2024-2025人教版初中七下数学湖北专版12.2.1第2课时-复合统计图【课件】
- 店面门头申请书
- 道路运输企业主要负责人考试过关检测习题带答案
- 小学三年级数学五千以内加减法单元测试口算题大全附答案
- DL∕T 584-2017 3kV~110kV电网继电保护装置运行整定规程
- 2024-2030年伤口护理管理行业市场现状供需分析及重点企业投资评估规划分析研究分析报告
- (正式版)FZ∕T 80018-2024 服装 防静电性能要求及试验方法
- 北师大版八年级下册生物教案全册
- 混凝土搅拌站安全生产风险分级管控体系方案全套资料2021-2022完整实施方案模板
- 新生儿红臀的预防和护理
- 初中英语比较级和最高级专项练习题含答案
- 《停车场规划设计规范》
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 康复医院建筑设计标准
- eras在妇科围手术
评论
0/150
提交评论