高一数学科必修必考知识点_第1页
高一数学科必修必考知识点_第2页
高一数学科必修必考知识点_第3页
高一数学科必修必考知识点_第4页
高一数学科必修必考知识点_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学科必修必考知识点高一数学科必修必考知识点1(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(_),那么y=f[g(_)]叫做f和g的复合函数,其中g(_)为内函数,f(u)为外函数.3、求函数y=f(_)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(_)的解析式求出_=f-1(y);(3)将_,y对换,得反函数的习惯表达式y=f-1(_),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(_0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量_有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan_(_∈R,且k∈Z),余切函数y=cot_(_∈R,_≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(_)的定义域是[a,b],求f[g(_)]的定义域是指满足a≤g(_)≤b的_的取值范围,而已知f[g(_)]的定义域[a,b]指的是_∈[a,b],此时f(_)的定义域,即g(_)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(_)=a_+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(_)]的表达式时,可用换元法求函数f(_)的表达式,这时必须求出g(_)的值域,这相当于求函数的定义域.(4)若已知f(_)满足某个等式,这个等式除f(_)是未知量外,还出现其他未知量(如f(-_),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(_)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(_)与其反函数f-1(_)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(_)变形为关于_的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如_>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(_),如果对于函数定义域内的任意一个_,都有f(-_)=-f(_)(或f(-_)=f(_)),那么函数f(_)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(_)为奇函数或偶函数的必要不充分条件;(2)f(_)=-f(_)或f(-_)=f(_)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:注意如下结论的运用:(1)不论f(_)是奇函数还是偶函数,f(|_|)总是偶函数;(2)f(_)、g(_)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(_)+g(_)是奇函数,f(_)·g(_)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;(3)奇偶函数的复合函数的奇偶性通常是偶函数;(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。3、有关奇偶性的几个性质及结论(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.(3)若奇函数f(_)在_=0处有意义,则f(0)=0成立.(4)若f(_)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。(5)若f(_)的定义域关于原点对称,则F(_)=f(_)+f(-_)是偶函数,G(_)=f(_)-f(-_)是奇函数.(6)奇偶性的推广函数y=f(_)对定义域内的任一_都有f(a+_)=f(a-_),则y=f(_)的图象关于直线_=a对称,即y=f(a+_)为偶函数.函数y=f(_)对定义域内的任-_都有f(a+_)=-f(a-_),则y=f(_)的图象关于点(a,0)成中心对称图形,即y=f(a+_)为奇函数。高一数学科必修必考知识点2重点难点讲解:1.回归分析:就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。2.线性回归方程设_与y是具有相关关系的两个变量,且相应于n组观测值的n个点(_i,yi)(i=1,.,n)大致分布在一条直线的附近,则回归直线的方程为。其中。3.线性相关性检验线性相关性检验是一种假设检验,它给出了一个具体检验y与_之间线性相关与否的办法。①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。②由公式,计算r的值。③检验所得结果如果|r|≤r0.05,可以认为y与_之间的线性相关关系不显著,接受统计假设。如果|r|>r0.05,可以认为y与_之间不具有线性相关关系的假设是不成立的,即y与_之间具有线性相关关系。典型例题讲解:例1.从某班50名学生中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建立该10名学生的物理成绩对数学成绩的线性回归模型。解:设数学成绩为_,物理成绩为,则可设所求线性回归模型为,计算,代入公式得∴所求线性回归模型为=0.74_+22.28。说明:将自变量_的值分别代入上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。大家可以在老师的帮助下对自己班的数学、化学成绩进行分例2.假设关于某设备的使用年限_和所支出的维修费用y(万元),有如下的统计资料:_23456y2.23.85.56.57.0若由资料可知y对_成线性相关关系。试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?分析:本题为了降低难度,告诉了y与_间成线性相关关系,目的是训练公式的使用。解:(1)列表如下:i12345_i23456yi2.23.85.56.57.0_iyi4.411.422.032.542.049162536于是b=,。∴线性回归方程为:=b_+a=1.23_+0.08。(2)当_=10时,=1.23×10+0.08=12.38(万元)即估计使用10年时维修费用是12.38万元。说明:本题若没有告诉我们y与_间是线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。例3.某省七年的国民生产总值及社会商品零售总额如下表所示:已知国民生产总值与社会商品的零售总额之间存在线性关系,请建立回归模型。年份国民生产总值(亿元)社会商品零售总额(亿元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合计4333.012194.24解:设国民生产总值为_,社会商品零售总额为y,设线性回归模型为。依上表计算有关数据后代入的表达式得:∴所求线性回归模型为y=0.445957_+37.4148,表明国民生产总值每增加1亿元,社会商品零售总额将平均增加4459.57万元。例4.已知某地每单位面积菜地年平均使用氮肥量_kg与每单位面积蔬菜每年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992_(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份19931994199519961997199871999_(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求_与y之间的相关系数,并检验是否线性相关;(2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显著水平0.05与自由度15-2相应的相关系数临界值r0.05比较,若r>r0.05,则线性相关,否则不线性相关。解:(1)列出下表,并用科学计算器进行有关计算:i123456789101112131415_i707480788592909592108115123130138145yi5.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0_iyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜产量与施用氮肥量的相关系数:r=由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显著水平0.05及自由度13相关系数临界值r0.05=0.514,则r>r0.05,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。(2)设所求的回归直线方程为=b_+a,则∴回归直线方程为=0.0931_+0.7102。当_=150时,y的估值=0.0931×150+0.7102=14.675(t)。说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心谨慎计算,如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论