高三三轮复习知识点分类汇总_第1页
高三三轮复习知识点分类汇总_第2页
高三三轮复习知识点分类汇总_第3页
高三三轮复习知识点分类汇总_第4页
高三三轮复习知识点分类汇总_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三三轮复习知识点分类汇总

一、生物学中常见化学元素及作用:

1、Ca:人体缺之会患骨软化病,血液中Ca2+含量低会引起抽搐,过高则会引起肌无力。血液中的Ca2+具有促进血液凝固的作用,如果用柠檬酸钠或草酸钠除掉血液中的Ca2+,血液就不会发生凝固。属于植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。

2、Fe:血红蛋白的组成成分,缺乏会患缺铁性贫血。血红蛋白中的Fe是二价铁,三价铁是不能利用的。属于植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。

3、Mg:叶绿体的组成元素。很多酶的激活剂。植物缺镁时老叶易出现叶脉失绿。

4、B:促进花粉的萌发和花粉管的伸长,缺乏植物会出现花而不实。

5、I:甲状腺激素的成分,缺乏幼儿会患呆小症,成人会患地方性甲状腺肿。

6、K:血钾含量过低时,会出现心肌的自动节律异常,并导致心律失常。

7、N:N是构成叶绿素、蛋白质和核酸的必需元素。N在植物体内形成的化合物都是不稳定的或易溶于水的,故N在植物体内可以自由移动,缺N时,幼叶可向老叶吸收N而导致老叶先黄。N是一种容易造成水域生态系统富营养化的一种化学元素,在水域生态系统中,过多的N与P配合会造成富营养化,在淡水生态系统中的富营养化称为“水华”,在海洋生态系统中的富营养化称为“赤潮”。动物体内缺N,实际就是缺少氨基酸,就会影响到动物体的生长发育。

8、P:P是构成磷脂、核酸和ATP的必需元素。植物体内缺P,会影响到DNA的复制和RNA的转录,从而影响到植物的生长发育。P还参与植物光合作用和呼吸作用中的能量传递过程,因为ATP和ADP中都含有磷酸。P也是容易造成水域生态系统富营养化的一种元素。植物缺P时老叶易出现茎叶暗绿或呈紫红色,生育期延迟。

9、Zn:是某些酶的组成成分,也是酶的活化中心。如催化吲哚和丝氨酸合成色氨酸的酶中含有Zn,没有Zn就不能合成吲哚乙酸。所以缺Zn引起苹果、桃等植物的小叶症和丛叶症,叶子变小,节间缩短。

二、生物学中常用的试剂:

1、斐林试剂:成分:0.1g/mlNaOH(甲液)和0.05g/mlCuSO4(乙液)。用法:将斐林试剂甲液和乙液等体积混合,再将混合后的斐林试剂倒入待测液,水浴加热或直接加热,如待测液中存在还原糖,则呈砖红色。

2、班氏糖定性试剂:为蓝色溶液。和葡萄糖混合后沸水浴会出现砖红色沉淀。用于尿糖的测定。

3、双缩脲试剂:成分:0.1g/mlNaOH(甲液)和0.01g/mlCuSO4(乙液)。用法:向待测液中先加入2ml甲液,摇匀,再向其中加入3~4滴乙液,摇匀。如待测中存在蛋白质,则呈现紫色。

4、苏丹Ⅲ:用法:取苏丹Ⅲ颗粒溶于95%的酒精中,摇匀。用于检测脂肪。可将脂肪染成橘黄色(被苏丹Ⅳ染成红色)。

5、二苯胺:用于鉴定DNA。DNA遇二苯胺(沸水浴)会被染成蓝色。

6、甲基绿:用于鉴定DNA。DNA遇甲基绿(常温)会被染成蓝绿色。

7、50%的酒精溶液

8、75%的酒精溶液

9、95%的酒精溶液:冷却的体积分数为95%的酒精可用于凝集DNA

10、15%的盐酸:和95%的酒精溶液等体积混合可用于解离根尖。

11、龙胆紫溶液:(浓度为0.01g/ml或0.02g/ml)用于染色体着色,可将染色体染成紫色,通常染色3~5分钟。(也可以用醋酸洋红染色)

12、20%的肝脏、3%的过氧化氢、3.5%的氯化铁:用于比较过氧化氢酶和Fe3+的催化效率。(新鲜的肝脏中含有过氧化氢酶)

13、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液:用于探索淀粉酶对淀粉和蔗糖的作用实验。

14、碘液:用于鉴定淀粉的存在。遇淀粉变蓝。

15、丙酮:用于提取叶绿体中的色素

16、层析液:(成分:20份石油醚、2份丙酮、和1份苯混合而成,也可用93号汽油)可用于色素的层析,即将色素在滤纸上分离开。

17、二氧化硅:在色素的提取的分离实验中研磨绿色叶片时加入,可使研磨充分。

18、碳酸钙:研磨绿色叶片时加入,可中和有机酸,防止在研磨时叶绿体中的色素受破坏。

19、0.3g/mL的蔗糖溶液:相当于30%的蔗糖溶液,比植物细胞液的浓度大,可用于质壁分离实验。

20、0.1g/mL的柠檬酸钠溶液:与鸡血混合,防凝血

21、氯化钠溶液:①可用于溶解DNA。当氯化钠浓度为2mol/L、0.015mol/L时DNA的溶解度最高,在氯化钠浓度为0.14mol/L时,DNA溶解度最高。②浓度为0.9%时可作为生理盐水。

22、胰蛋白酶:①可用来分解蛋白质。②可用于动物细胞培养时分解组织使组织细胞分散于。

23、秋水仙素:人工诱导多倍体试剂。用于萌发的种子或幼苗,可使染色体组加倍,原理是可抑制正在分裂的细胞纺缍体的形成。

24、氯化钙:

三、生物学中常见的物理、化学、生物方法及用途:

1、致癌因子:物理因子:电离辐射、X射线、紫外线等。

化学因子:砷、苯、煤焦油

病毒因子:肿瘤病毒或致癌病毒,已发现150多种病毒致癌。

2、基因诱变:物理因素:Χ射线、γ射线、紫外线、激光

化学因素:亚硝酸、硫酸二乙脂

3、细胞融合:物理方法:离心、振动、电刺激

化学方法:PEG(聚乙二醇)

生物方法:灭活病毒(可用于动物细胞融合)

四、生物学中常见英文缩写名称及作用

1.DNA、RNA:脱氧核糖核酸、核糖核酸。遗传物质

2.AIDS:艾滋病

3.HIV:人类免疫缺陷病毒

4.HLA:人类白细胞抗原

5.ATP:三磷酸腺苷,生物体生命活动的直接能源物质。ATPADP+Pi+能量

6.NADP+:辅酶Ⅱ。NADPH:还原型辅酶Ⅱ在光合作用过程中可把电能转化为活跃的化能,NADPH具有强的还原性和活跃的化学能两个特性。反应式如下:

NADP++2e+H+NADPH

7.PEP:磷酸烯醇式丙酮酸CO2+PEPC4

8.C3植物:小麦、水稻、大麦、大豆、马铃薯、菜豆和菠菜

C4植物:玉米、甘蔗、高粱、苋菜

9.PEG:聚乙二醇,用于原生质体融合

五、人体正常生理指标:

1、血液PH值:7.35~7.45

2、血糖含量:80~120mg/dl。高血糖:130mg/dl,肾糖阈:160~180mg/dl,早期低血糖:50~60mg/dl,晚期低血糖:<45mg/dl。

3、体温:370C左右。直肠(36.90C~37.90C,平均37.50C);口腔(36.70C~37.70C,平均37.20C);腋窝(36.00C~37.40C,平均36.80C)

4、总胆固醇:110~230mg/dl血清

5、胆固醇脂:90~130mg/dl血清(占总胆固醇量的60%~80%)

6、甘油三脂:20~110mg/dl血清

六、高中生物常见化学反应方程式:

1、ATP合成反应方程式:

ATPADP+Pi+能量

2、光合反应:

总反应方程式:6CO2+12H2OC6H12O6+6H2O+6O2

分步反应:①光反应:2H2O4[H]+O2

ADP+Pi+能量ATP

NADP++2e+H+NADPH

②暗反应:CO2+C52C3

C3C6H12O6+C5

3、呼吸反应:

(1)有氧呼吸总反应方程式:

C6H12O6+6H2O+6O26CO2+12H2O+能量

分步反应:①C6H12O62C3H4O3+4[H]+2ATP(场所:细胞质基质)

②2C3H4O3+6H2O6CO2+20[H]+2ATP(场所:线粒体)

③24[H]+6O212H2O+34ATP(场所:线粒体)

(2)无氧呼吸反应方程式:(场所:细胞质基质)

①C6H12O62C2H5OH+2CO2+2ATP

②C6H12O62C3H6O3+2ATP

4、AA缩合反应:nAAn肽+(n-1)H2O

5、固氮反应:N2+e+H++ATPNH3+ADP+Pi

七、生物学中出现的人体常见疾病:

1、非遗传病:

①风湿性心脏病、类风湿性关节炎、系统性红斑狼(自身免疫病。免疫机制过高)

②艾滋病(免疫缺陷病)胸腺素可促进T细胞的分化、成熟,临床上常用于治疗细胞免疫功能缺陷功低下患者(如艾滋病、系统性红斑狼疮)

2、遗传病:(见下)

八、人类几种遗传病及显隐性关系:

类别名称

单基因遗传病常染色体遗传隐性白化病、先天性聋哑、苯丙酮尿症

显性多指、并指、短指、软骨发育不全

性(X)染色体遗传隐性红绿色盲、血友病、果蝇白眼、进行性肌营养不良

显性抗维生素D佝偻病

多基因遗传病唇裂、无脑儿、原发性高血压、青少年型糖尿病

染色体异常遗传病常染色体病数目改变21三体综合症(先天愚型)

结构改变猫叫综合症

性染色体病性腺发育不良

九、高中生物学中涉及到的微生物:

1、病毒类:无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒(类病毒、拟病毒、朊病毒)

①动物病毒:RNA类(脊髓灰质炎病毒、狂犬病毒、麻疹病毒、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、SARS病毒)

DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒)

②植物病毒:RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等)

③微生物病毒:噬菌体

2、原核类:具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:细菌(杆状、球状、螺旋状)、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。

①细菌:三册书中所涉及的所有细菌的种类:

乳酸菌、硝化细菌(代谢类型);

肺炎双球菌S型、R型(遗传的物质基础);

结核杆菌和麻风杆菌(胞内寄生菌);

根瘤菌、圆褐固氮菌(固氮菌);

大肠杆菌、枯草杆菌、土壤农杆菌(为基因工程提供运载体,也可作为基因工程的受体细胞);

苏云金芽孢杆菌(为抗虫棉提供抗虫基因);

假单孢杆菌(分解石油的超级细菌);

甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌(微生物的代谢);

链球菌(一般厌氧型);

产甲烷杆菌(严格厌氧型)等

②放线菌:是主要的抗生素产生菌。它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素(85%)。繁殖方式为分生孢子繁殖。

③衣原体:砂眼衣原体。

3、灭菌:是指杀死一定环境中所有微生物的细胞、芽孢和孢子。实验室最常用的是高压蒸汽灭菌法。

4、真核类:具有复杂的细胞器和成形的细胞核,包括:酵母菌、霉菌(丝状真菌)、蕈菌(大型真菌)等真菌及单细胞藻类、原生动物(大草履虫、小草履虫、变形虫、间日疟原虫等)等真核微生物。

①霉菌:可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂(如蛋白酶、淀粉酶、纤维素酶等)、固醇、维生素等。在农业上可用于饲料发酵、生产植物生长素(如赤酶霉素)、杀虫农药(如白僵菌剂)、除草剂等。危害如可使食物霉变、产生毒素(如黄曲霉毒素具致癌作用、镰孢菌毒素可能与克山病有关)。常见霉菌主要有毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等。

5、微生物代谢类型:

①光能自养:光合细菌、蓝细菌(水作为氢供体)紫硫细菌、绿硫细菌(H2S作为氢供体,严格厌氧)2H2S+CO2[CH2O]+H2O+2S

②光能异养:以光为能源,以有机物(甲酸、乙酸、丁酸、甲醇、异丙醇、丙酮酸、和乳酸)为碳源与氢供体营光合生长。阳光细菌利用丙酮酸与乳酸用为唯一碳源光合生长。

③化能自养:硫细菌、铁细菌、氢细菌、硝化细菌、产甲烷菌(厌氧化能自养细菌)CO2+4H2CH4+2H2O

④化能异养:寄生、腐生细菌。

⑤好氧细菌:硝化细菌、谷氨酸棒状杆菌、黄色短杆菌等

⑥厌氧细菌:乳酸菌、破伤风杆菌等

⑦中间类型:红螺菌(光能自养、化能异养、厌氧[兼性光能营养型])、氢单胞菌(化能自养、化能异养[兼性自养])、酵母菌(需氧、厌氧[兼性厌氧型])

⑧固氮细菌:共生固氮微生物(根瘤菌等)、自生固氮微生物(圆褐固氮菌)

十、高中生物学中涉及到的较特殊的细胞:

1、红细胞:无线粒体、无细胞核

2、精子:不具有分裂能力、仅有及少的细胞质在尾总部

3、神经细胞:具突起,不具有分裂能力

十一、内分泌系统:

1、甲状腺:位于咽下方。可分泌甲状腺激素。

2、肾上腺:分皮质和髓质。皮质可分泌激素约50种,都属于固醇类物质,大体可为三类。1、糖皮质激素如可的松、皮质酮、氢化可的松等。他们的作用是使蛋白质和氨基酸转化为葡萄糖;使肝脏将氨基酸转化为糖原;并使血糖增加。此外还有抗感染和加强免疫功能的作用。2、盐皮质激素如醛固酮、脱氧皮质酮等。此类激素的作用是促进肾小管对钠的重吸收,抑制对钾的重吸收,因而也促进对氯和水的重吸收。3、性激素。髓质可分泌两种激素即肾上腺素和甲肾上腺素,两者都是氨基酸的衍生物,功能也相似,主要是引起人或动物兴奋、激动,如引起血压上升、心跳加快、代谢率提高,同时抑制消化管蠕动,减少消化管的血流,其作用在于动员全身的潜力应付紧急情况。

3、脑垂体:分前叶(腺性垂体)和后叶(神经性垂体),后叶与下丘脑相连。前叶可分泌生长激素(191AA)、促激素(促甲状腺激素、促肾上腺皮质激素、促性腺激素)、催乳素(199AA)。后叶的激素有催产素(OXT)和抗利尿激素(ADH)(升压素)(都为含9个氨基酸的短肽),是由下丘脑分泌后运至垂体后叶的。

4、下丘脑:是机体内分泌系统的总枢纽。可分泌激素如促肾上腺皮质激素释放因子、促甲状腺激素释放激素、促性腺激素释放激素、生长激素释放激素、生长激素释放抑制激素、催乳素释放因子、催乳素释放抑制因子等。

5、性腺:主要是精巢和卵巢。可分泌雄性激素、雌性激素、孕酮(黄体酮)。

6、胰岛:a细胞可分泌胰高血糖素(29个AA的短肽),b细胞可分泌胰岛素(51个AA的蛋白质),两者相互拮抗。

7、胸腺:分泌胸腺素,有促进淋巴细胞的生长与成熟的作用,因而和机体的免疫功能有关。

化学性质激素名称来源

肽、蛋白质类激素(由脑和消化管等部位所分泌)促甲状腺激素释放激素、促性腺激素释放激素下丘脑、中枢神经系统其它部位

生长激素释放激素、促肾上腺皮质激素释放因子、催乳素释放因子(抑制因子)、下丘脑

抗利尿激素、催产素下丘脑、神经垂体

促甲状腺激素、催乳素、生长激素腺垂体

胸腺素胸腺

胰岛素、胰高血糖素胰岛B细胞、胰岛A细胞

胺类激素(含N)肾上腺素肾上腺髓质

甲状腺激素甲状腺

类固醇激素糖皮质激素、糖皮质类固醇、醛固酮肾上腺皮质

性激素性腺

十二、高中生物教材中的育种知识

1、杂交育种:

(1)原理:基因重组(通过基因分离、自由组合或连锁交换,分离出优良性状或使各种优良性状集中在一起)

(2)方法:连续自交,不断选种。

(3)举例:

已知小麦的高秆(D)对矮秆(d)为显性,抗锈病(R)对易染锈病(r)为显性,两对性状独立遗传。现有高秆抗锈病、矮秆易染病两纯系品种。要求使用杂交育种的方法培育出具有优良性状的新品种。

操作方法:

①让纯种的高秆抗锈病和矮秆易染锈病小麦杂交得F1;

②让F1自交得F2;

③选F2中矮秆抗锈病小麦自交得F3;

④留F3中未出现性状分离的矮秆抗病个体,对于F3中出现性状分离的再重复③④步骤

(4)特点:育种年限长,需连续自交不断择优汰劣才能选育出需要的类型。

(5)说明:

①该方法常用于:

a.同一物种不同品种的个体间,如上例;

b.亲缘关系较近的不同物种个体间(为了使后代可育,应做染色体加倍处理,得到的个体即是异源多倍体),如八倍体小黑麦的培育、萝卜和甘蓝杂交。

②若该生物靠有性生殖繁殖后代,则必须选育出优良性状的纯种,以免后代发生性状分离;若该生物靠无性生殖产生后代,那么只要得到该优良性状就可以了,纯种、杂种并不影响后代性状的表达。

2、诱变育种:

(1)原理:基因突变

(2)方法:用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙脂等)来处理生物,使其在细胞分裂间期DNA复制时发生差错,从而引起基因突变。

(3)举例:太空育种、青霉素高产菌株的获得

(4)特点:提高了突变率,创造人类需要的变异类型,从中选择培育出优良的生物品种,但由于突变的不定向性,因此该种育种方法具有盲目性。

(5)说明:该种方法常用于微生物育种、农作物诱变育种等

3、单倍体育种

(1)原理:染色体变异

(2)方法:花药离体培养获得单倍体植株,再人工诱导染色体数目加倍。

(3)举例:

已知小麦的高秆(D)对矮秆(d)为显性,抗锈病(R)对易染锈病(r)为显性,两对性状独立遗传。现有高秆抗锈病、矮秆易染病两纯系品种。要求用单倍体育种的方法培育出具有优良性状的新品种。

操作方法:

①让纯种的高秆抗锈病和矮秆易染锈病小麦杂交得F1;

②取F1的花药离体培养得到单倍体;

③用秋水仙素处理单倍体幼苗,使染色体加倍,选取具有矮秆抗病性状的个体即为所需类型。

(4)特点:由于得到的个体基因都是纯合的,自交后代不发生性状分离,所以相对于杂交育种来说,明显缩短了育种的年限。

(5)说明:

①该方法一般适用于植物。

②该种育种方法有时须与杂交育种配合,其中的花药离体培养过程需要组织培养技术手段的支持。

4、多倍体育种:

(1)原理:染色体变异

(2)方法:用秋水仙素处理萌发的种子或幼苗,从而使细胞内染色体数目加倍,染色体数目加倍的细胞继续进行正常的有丝分裂,即可发育成多倍体植株。

(3)举例:

①三倍体无子西瓜的培育(同源多倍体的培育)

过程图解:参见高二必修教材第二册图解

说明:

a.三倍体西瓜种子种下去后,为什么要授以二倍体西瓜的花粉?

西瓜三倍体植株是由于减数分裂过程中联会紊乱,未形成正常生殖细胞,因而不能形成种子。但在三倍体植株上授以二倍体西瓜花粉后,花粉在柱头上萌发的过程中,将自身的色氨酸转变为吲哚乙酸的酶体系分泌到西瓜三倍体植株的子房中去,引起子房合成大量的生长素;其次,二倍体西瓜花粉本身的少量生长素,在授粉后也可扩散到子房中去,这两种来源的生长素均能使子房发育成果实(三倍体无籽西瓜)。

b.如果用二倍体西瓜作母本、四倍体西瓜作父本,即进行反交,则会使珠被发育形成的种皮厚硬,从而影响无子西瓜的品质。

②八倍体小黑麦的培育(异源多倍体的培育):

普通小麦是六倍体(AABBDD),体细胞中含有42条染色体,属于小麦属;黑麦是二倍体(RR),体细胞中含有14条染色体,属于黑麦属。两个不同的属的物种一般是难以杂交的,但也有极少数的普通小麦品种含有可杂交基因,能接受黑麦的花粉。杂交后的子一代含有四个染色体组(ABDR),不可育,必须用人工方法进行染色体加倍才能产生后代,染色体加倍后的个体细胞中含有八个染色体组(AABBDDRR),而这些染色体来自不同属的物种,所以称它为异源八倍体小黑麦。

(4)特点:该种育种方法得到的植株茎秆粗壮,叶片、果实和种子较大,糖类和蛋白质等营养物质的含量有所增加。

(5)说明:①该种方法常用于植物育种;②有时须与杂交育种配合。

5、利用“基因工程”育种:

(1)原理:DNA重组技术(属于基因重组范畴)

(2)方法:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,放到另一种生物的细胞里,定向地改造生物的遗传性状。操作步骤包括:提取目的基因、目的基因与运载体结合、将目的基因导入受体细胞、目的基因的检测与表达等。

(3)举例:能分泌人类胰岛素的大肠杆菌菌株的获得,抗虫棉,转基因动物等

(4)特点:目的性强,育种周期短。

(5)说明:对于微生物来说,该项技术须与发酵工程密切配合,才能获得人类所需要的产物。

6、利用“细胞工程”育种:

原理植物体细胞杂交细胞核移植

方法用两个来自不同植物的体细胞融合成一个杂种细胞,并且把杂种细胞培育成新植物体的方法。操作步骤包括:用酶解法去掉细胞壁、用诱导剂诱导原生质体融合、将杂种细胞进行组织培养等。是把一生物的细胞核移植到另一生物的去核卵细胞中,再把该细胞培育成一个新的生物个体。操作步骤包括:吸取细胞核、将移植到去核卵细胞中、培育(可能要使用胚胎移植技术)等。

举例“番茄马铃薯”杂种植株鲤鲫移核鱼,克隆动物等

特点可克服远缘杂交不亲合的障碍,大大扩展了可用于杂交的亲本组合范围。

说明该种方法须植物组织培养等技术手段的支持。该种方法有时须胚胎移植等技术手段的支持。

7、利用植物激素进行育种:

1.原理:适宜浓度的生长素可以促进果实的发育

2.方法:在未受粉的雌蕊柱头上涂上一定浓度的生长素类

似物溶液,子房就可以发育成无子果实。

3.举例:无子番茄的培育

4.特点:由于生长素所起的作用是促进果实的发育,并不能导致植物的基因型的改变,所以该种变异类型是不遗传的。

5.说明:该种方法适用于植物。

十三、自然界物质循环:

1.碳循环:氮循环:

2.硫循环:

十四、检索表

(1)细胞分裂分类检索:

1无同源染色体……减数II

1有同源染色体

2联会、四分体…………减数I

2无联会…有丝分裂

(2)遗传类型分裂检索:

1营养生殖,果皮、种皮发育......................不符合分离自由组合

1卵式生殖,受精

2基因在X上,或已知色盲、血友病...................伴性遗传

2基因在常染色体上

3一对等位基因;自交3:1;测交1:1...............分离规律

3两对等位基因;自交9:3:3:1;测交1:1:1:1...自由组合规律

十五、生物学中的谐音记忆:

1、微量矿质元素记忆法:你猛踢朋(友),心痛目绿(Ni、Mn、Fe、B、Zn、Cu、Mo、Cl)

2、醛固酮调节钾钠的量:甲醛一致

3、微生物生存的最适PH值:

失窃防扒真无聊(细菌的最适PH值为6.5~7.5,放线菌的为7.5~8.5,真菌的为5.0~6.0)

谷氨酸棒状杆菌7~8

高中生物复习归纳

一、常现生物:

1.细菌:原核类:具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:细菌(杆状、球状、螺旋状)、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。

①细菌:三册书中所涉及的所有细菌的种类:

乳酸菌、硝化细菌(代谢类型);

肺炎双球菌S型、R型(遗传的物质基础);

结核杆菌和麻风杆菌(胞内寄生菌);

根瘤菌、圆褐固氮菌(固氮菌);

大肠杆菌、枯草杆菌、土壤农杆菌(为基因工程提供运载体,也可作为基因工程的受体细胞);

苏云金芽孢杆菌(为抗虫棉提供抗虫基因);

假单孢杆菌(分解石油的超级细菌);

甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌(微生物的代谢);

链球菌(一般厌氧型);

产甲烷杆菌(严格厌氧型)等

②放线菌:是主要的抗生素产生菌。它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素(85%)。繁殖方式为分生孢子繁殖。

③衣原体:砂眼衣原体。

2.病毒:病毒类:无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒(类病毒、拟病毒、朊病毒)①动物病毒:RNA类(脊髓灰质炎病毒、狂犬病毒、麻疹病毒、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、SARS病毒)

DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒)

②植物病毒:RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等)

③微生物病毒:噬菌体。

3.真核类:具有复杂的细胞器和成形的细胞核,包括:酵母菌、霉菌(丝状真菌)、蕈菌(大型真菌)等真菌及单细胞藻类、原生动物(大草履虫、小草履虫、变形虫、间日疟原虫等)等真核微生物。

①霉菌:可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂(如蛋白酶、淀粉酶、纤维素酶等)、固醇、维生素等。在农业上可用于饲料发酵、生产植物生长素(如赤酶霉素)、杀虫农药(如白僵菌剂)、除草剂等。危害如可使食物霉变、产生毒素(如黄曲霉毒素具致癌作用、镰孢菌毒素可能与克山病有关)。常见霉菌主要有毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等。

4.微生物代谢类型:

①光能自养:光合细菌、蓝细菌(水作为氢供体)紫硫细菌、绿硫细菌(H2S作为氢供体,严格厌氧)2H2S+CO2[CH2O]+H2O+2S

②光能异养:以光为能源,以有机物(甲酸、乙酸、丁酸、甲醇、异丙醇、丙酮酸、和乳酸)为碳源与氢供体营光合生长。阳光细菌利用丙酮酸与乳酸用为唯一碳源光合生长。

③化能自养:硫细菌、铁细菌、氢细菌、硝化细菌、产甲烷菌(厌氧化能自养细菌)CO2+4H2CH4+2H2O

④化能异养:寄生、腐生细菌。

⑤好氧细菌:硝化细菌、谷氨酸棒状杆菌、黄色短杆菌等

⑥厌氧细菌:乳酸菌、破伤风杆菌等

⑦中间类型:红螺菌(光能自养、化能异养、厌氧[兼性光能营养型])、氢单胞菌(化能自养、化能异养[兼性自养])、酵母菌(需氧、厌氧[兼性厌氧型])

⑧固氮细菌:共生固氮微生物(根瘤菌等)、自生固氮微生物(圆褐固氮菌)

5.植物:C3和C4植物、阳生和阴生植物、豌豆、荠菜、玉米、水稻(2×12)、洋葱(2×8)、香蕉(3n)、普通小麦(六倍体)、八倍体小黑麦、无籽西瓜(3n)、无籽番茄、抗虫棉、豆科植物等。

6.动物:人(2×23)、果蝇(2×4)、马(2×32)、驴(2×31)、骡子(63)等。

二、常用物质和试剂:

1.常用物质:

ATP、PEP(磷酸烯醇式丙酮酸)、PEG(聚乙二醇)、灭活的病毒、NADPH(还原型辅酶Ⅱ)、过敏原、植物激素、生长素、生长素类似物、动物激素、丙酮酸、少数特殊状态的叶绿素a分子、质粒、限制性内切酶、DNA连接酶等。

[这个贴子最后由BigBomb在2005-7-2716:24:47编辑过]

我是一个永远的宇宙探密者

2.常用试剂:

斐林试剂、苏丹Ⅲ、苏丹Ⅳ、双缩脲试剂、二苯胺、50%的酒精溶液、15%的盐酸、95%的酒精溶液、龙胆紫溶液、醋酸洋红、20%的肝脏、3%的过氧化氢、3.5%的氯化铁、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液、5%的盐酸、5%的氢氧化钠、碘液、丙酮、层析液、二氧化硅、碳酸钙、0.3g/mL的蔗糖溶液、硝酸钾溶液、0.1g/mL的柠檬酸钠溶液、2mol/L和0.015mol/L的氯化钠溶液、95%的冷酒精溶液、75%的酒精溶液、胰蛋白酶、秋水仙素、氯化钙等。

三、重要的名词、观点、结论

(一)重要的名词:

1.应激性、细胞、自由水、结合水、肽键、多肽、真核细胞、原核细胞、自由扩散、协助扩散、主动运输、细胞的分化、细胞的癌变、细胞的衰老、致癌因子、有丝分裂、细胞周期、无丝分裂

2.酶、ATP、高能磷酸化合物、高能磷酸键、渗透作用、原生质、原生质层、质壁分离、质壁分离复原、选择性吸收、光反应、暗反应、光合作用效率、有氧呼吸、无氧呼吸、内环境、稳态、脱氨基作用、氨基转换作用、化能合成作用

3.向性运动、神经调节、体液调节、激素调节、顶端优势、反馈调节、协同作用、拮抗作用、反射、反射弧、非条件反射、条件反射、突触、高级神经中枢、先天性行为、后天性行为

4.有性生殖、无性生殖、营养生殖、双受精、受精作用、减数分裂、性原细胞、初级性母细胞、次级性母细胞、染色体、染色单体、同源染色体、非同源染色体、四分体、染色体组、性染色体、常染色体、个体发育、胚的发育、胚乳的发育、顶细胞、基细胞、胚胎发育、胚后发育、卵裂、囊胚期、原肠胚、动物极、植物极

5.DNA、RNA、碱基互补配对、半保留复制、基因、转录、翻译、显性性状、隐性性状、相对形状、基因型、表现型、等位基因、基因的分离定律、基因的自由组合定律、正交、反交、伴性遗传、交叉遗传、基因突变、基因重组、染色体变异、杂交育种、人工诱变育种、单倍体育种、多倍体育种、花药离体培养、单基因遗传病、多基因遗传病、染色体异常遗传病、优生学

6.自然选择学说、基因库、基因频率、隔离、地理隔离、生殖隔离

7.生物圈、生态学、生态因素、互利共生、寄生、竞争、捕食、种群、种群密度、种群数量增长曲线、生物群落、生态系统(森林、海洋、草原、农业、湿地、城市)、食物链、食物网、营养级、物质循环、能量流动、生态系统稳定性、生物多样性、生物圈的稳态、碳循环、氮循环、硫循环、生态农业

8.人体的稳态、人体的平衡及调节、糖尿病、营养物质、营养、特异性免疫、免疫系统、抗原、抗体、抗原决定簇、体液免疫、细胞免疫、过敏反应、自身免疫病、免疫缺陷病

9.生物固氮、共生固氮微生物、自生固氮微生物

10.细胞核遗传、细胞质遗传、母系遗传、编码区、非编码区、RNA聚合酶结合位点、外显子、内含子、人类基因组计划、基因工程、质粒

11.生物膜、细胞的生物膜系统、细胞工程、植物组织培养、植物体细胞杂交、细胞的全能性、愈伤组织、脱分化、再分化、动物细胞培养液、原代培养、传代培养、细胞株、细胞系、单克隆抗体

12.微生物、菌落、衣壳、核衣壳、囊膜、刺突、碳源、氮源、生长因子、选择培养基、鉴别培养基、初级代谢产物、次级代谢产物、组成酶、诱导酶、微生物的生长曲线、接种、发酵罐、发酵工程、单细胞蛋白

(二)重要的观点、结论:

1.生物体具有共同的物质基础和结构基础。细胞是一切动植物结构的基本单位。病毒没有细胞结构。细胞是生物体的结构和功能的基本单位。

2.新陈代谢是生物体进行一切生命活动的基础,是生物最基本的特征,是生物与非生物的最

本质的区别。

3.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。生物的遗传特

性,使生物物种保持相对稳定。生物的变异特性,使生物物种能够产生新的性状,以致形

成新的物种,向前进化发展。

4.生物体具应激性,因而能适应周围环境。生物体都能适应一定的环境,也能影响环境。

5.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。生物界与非生物界还具有差异性。组成生物体的化学元素和化合物是生物体生命活动的物质基础。

6.糖类是细胞的主要能源物质,葡萄糖是细胞的重要能源物质。淀粉和糖元是植物、动物细胞内的储能物质。蛋白质是一切生命活动的体现者。脂肪是生物体的储能物质。核酸是一切生物的遗传物质。

7.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,只有这些化合物按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。

8.细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。

9.细胞壁对植物细胞有支持和保护作用。线粒体是活细胞进行有氧呼吸的主要场所。叶绿体是绿色植物光合作用的场所。核糖体是细胞内将氨基酸合成为蛋白质的场所。染色质和染色体是细胞中同一种物质在不同时期的两种形态。细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。

10.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。

11.原核细胞最主要的特点是没有由核膜包围的典型的细胞核。

12.细胞以分裂的方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。

13.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

14.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。

15.酶的催化作用具有高效性和专一性,需要适宜的温度和pH值等条件。

16.ATP是新陈代谢所需要能量的直接来源。

17.光合作用释放的氧全部来自水。一部分氨基酸和脂肪也是光合作用的直接产物。所以确切地说,光合作用的产物是有机物和氧。光能在叶绿体中的转换,包括三个步骤:光能转换成电能;电能转换成活跃的化学能;活跃的化学能转换成稳定的化学能。

18.植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。

19.C4植物的叶片中,围绕着维管束的是呈“花环型”的两圈细胞:里面的一圈是维管束鞘细胞,外面的一圈是一部分叶肉细胞。

20.高等的多细胞动物,它们的体细胞只有通过内环境,才能与外界环境进行物质交换。

21.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。

22.植物生命活动调节的基本形式是激素调节。人和高等动物生命活动调节的基本形式包括神经调节和体液调节,其中神经调节的作用处于主导地位。激素调节是体液调节的主要内容。

23.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段,向光的一侧生长素分布的少,生长得慢;背光的一侧生长素分布的多,生长得快。生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度促进生长,高浓度抑制生长。在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂一定浓度的生长素溶液可获得无籽果实。

24.垂体除了分泌生长激素促进动物体的生长外,还能分泌促激素调节、管理其他内分泌腺的分泌活动。下丘脑是机体调节内分泌活动的枢纽。通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。相关激素间具有协同作用和拮抗作用。

25.(多细胞)动物神经活动的基本方式是反射,基本结构是反射弧(即:反射活动的结构基础是反射弧)。在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。

26.神经冲动在神经纤维上的传导是双向的。在神经元之间的传递是单方向的,只能从一个神经元的轴突传递给另一个神经元的细胞体或树突,而不能向相反的方向传递。

27.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的生存和进化具重要意义。营养生殖能使后代保持亲本的性状。

28.减数分裂的结果是,产生的生殖细胞中的染色体数目比精(卵)原细胞减少了一半。减数分裂过程中染色体数目的减半发生在减数第一次分裂中。减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两条染色体移向哪极是随机的,不同源的染色体(非同源染色体)间可进行自由组合。

29.一个卵原细胞经过减数分裂,只形成一个卵细胞(一种基因型)。一个精原细胞经过减数分裂,形成四个精子(两种基因型)。

30.对于有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞染色体数目的恒定,对于生物的遗传和变异,都是十分重要的。

31.对于有性生殖的生物来说,个体发育的起点是受精卵。

32.很多双子叶植物成熟种子中无胚乳(如豆科植物、花生、油菜、荠菜等),是因为在胚和胚乳发育的过程中胚乳被子叶吸收了,营养贮藏在子叶里,供以后种子萌发时所需。单子叶植物一般有胚乳(如水稻、小麦、玉米等)。植物花芽的形成标志着生殖生长的开始。

33.高等动物的个体发育包括胚的发育和胚后发育。胚的发育包括:受精卵→卵裂→囊胚→原肠胚→三个胚层分化→组织、器官、系统的形成→动物幼体。

34.噬菌体侵染细菌实验中,在前后代之间保持一定的连续性的是DNA,而不是蛋白质,从而证明了DNA是遗传物质。绝大多数生物的遗传物质是DNA,因此DNA是主要的遗传物质。

在真核细胞中,DNA是主要遗传物质,而DNA又主要分布在染色体上,所以染色体是遗传物质的主要载体。

35.在DNA分子中,碱基对的排列顺序千变万化,构成了DNA分子的多样性;而对某种特定的DNA分子来说,它的碱基对排列顺序却是特定的,又构成了每一个DNA分子的特异性。这从分子水平说明了生物体具有多样性和特异性的原因。

36.遗传信息是指基因上脱氧核苷酸的排列顺序。遗传密码是指信使RNA上的核糖核苷酸的排列顺序。密码子是指信使RNA上的决定一个氨基酸的三个相邻的碱基。信使RNA上四种碱基的组合方式有64种,其中,决定氨基酸的有61种,3种是终止密码子。反密码子是指转运RNA上能够和它所携带的氨基酸的密码子配对的三个碱基,由于决定氨基酸的密码子有61种,所以,反密码子也有61种。

37.遗传信息的传递是通过DNA分子的复制来完成的,从亲代DNA传到子代DNA,从亲代个体传到子代个体。子代与亲代在性状上相似是由于子代获得了亲代复制的一份DNA的缘故。由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息(即:基因的脱氧核苷酸的排列顺序就代表遗传信息)。

38.DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行。

39.基因是有遗传效应的DNA片段,基因在染色体上呈线性排列,染色体是基因的主要载体(叶绿体和线粒体中的DNA上也有基因存在)。一般情况下,一条染色体上有一个DNA分子,在一个DNA分子上有许多基因。

基因的表达是通过DNA控制蛋白质的合成来实现的,包括转录和翻译两个过程。

一些基因通过控制酶的合成来控制代谢过程,从而控制生物的性状;一些基因通过控制蛋白质分子的结构来直接影响性状。

40.生物的遗传是细胞核和细胞质共同作用的结果。

细胞质遗传的特点:母系遗传;杂交后代性状不会出现一定的分离比。

线粒体和叶绿体中的DNA,都能进行自我复制,并通过转录和翻译控制某些蛋白质的合成。

41.生物个体基因型和表现型的关系是:基因型是性状表现的内在因素,而表现型则是基因

型的表现形式。在个体发育过程中,生物个体的表现型不仅要受到内在基因的控制,也要

受到环境条件的影响,表现型是基因型和环境相互作用的结果。

42.在杂种体内,等位基因虽然共同存在于一个细胞中,但是它们分别位于一对同源染色体

上,随着同源染色体的分离而分离,具有一定的独立性。在进行减数分裂的时候,等位基

因随着配子遗传给后代,这就是基因的分离规律。

具有两对(或更多对)相对性状的亲本进行杂交,在F1进行减数分裂形成配子时,

等位基因随着同源染色体的分离而分离的同时,非同源染色体上的基因则表现为自由组

合。这一规律就叫基因的自由组合规律,也叫独立分配规律。

43.由显性基因控制的遗传病的发病率是很高的,一般表现为代代遗传。

44.在近亲结婚的情况下,他们有可能从共同的祖先那里继承相同的隐性致病基因,而使其

后代出现病症的机会大大增加,因此,近亲结婚应该禁止。我国的婚姻法规定,直系血亲

和三代以内的旁系血亲禁止结婚。

45.一般地说,色盲这种遗传病是由男性通过他的女儿遗传给他的外甥的(交叉遗传)。

46.基因突变是生物变异的根本来源,也是生物进化的重要因素,它可以产生新基因。

基因突变是在一定的外界环境条件或生物内部因素作用下,由于基因中脱氧核苷酸的种

类、数量和排列顺序的改变而产生的。也就是说,基因突变是基因的分子结构发生了改变

的结果。

47.自然界中的多倍体植物,主要是受外界条件剧烈变化的影响而形成的。人工形成的多倍

体植物是用秋水仙素处理萌发的种子或幼苗,使有丝分裂前期不能形成纺锤体。

48.利用单倍体植株培育新品种,可以明显地缩短育种年限。

所谓的利用单倍体进行秋水仙素处理可以得到纯合体,这里要有一个前提条件,那就是这个单倍体必须是针对二倍体而言,即是由二倍体的配子培育而成的单倍体。

49.自然选择学说包括:过度繁殖、生存斗争、遗传和变异、适者生存。遗传和变异是生物进

化的内在因素;生存斗争推动着生物的进化,它是生物进化的动力;适应是自然选择的结果。生物的变异一般是不定向的,而自然选择则是定向的(定在与生存环境相适应的方向上)。定向的自然选择决定着生物进化的方向。凡是生存下来的生物都是对环境能适应的,而被淘汰的生物都是对环境不适应的。这就是适者生存,不适者被淘汰,称为自然选择。当生物产生了变异以后,由自然选择来决定其生存或淘汰。

50.种群是生物进化的单位,突变(包括基因突变和染色体变异)和基因重组产生进化的原材

自然选择决定生物进化的方向,隔离导致物种的形成。生物进化的实质是种群基因频率的改变。突变和基因重组、自然选择、隔离是物种形成的三个基本环节。

51.环境中的各种生态因素,对生物体是同时共同其作用的。生物的生存和繁衍受各种生态因素的综合影响,这些生态因素共同构成了生物的生存环境。

生物与生存环境的关系是:适应环境,受到环境因素的影响,同时也在改变环境。

生物与环境之间是相互作用的,它们是一个不可分割的统一整体。所有的生态系统都有一个共同的特点就是既有大量的生物,还有赖以生存的无机环境,二者是缺一不可的。

52.森林是生物圈中能量流动和物质循环的主体。由于森林生态系统面积广阔,结构复杂,光合效率高,因此是地球上生产力最高的生态系统,是生物圈的能量基地。

53.生产者所固定的太阳能的总量便是流经这个生态系统的总能量。

54.食物链是通过食物关系而构成生态系统中的物质和能量的流动渠道。它既是能量转换链,也是物质传递链。在生态农业中还是价值增殖链。

55.在食物链和食物网中,越是位于能量金字塔顶端的生物,得到的能量越少,而通过生物

富集作用,体内的有害成分却越多。

人们研究生态系统中能量流动的主要目的,就是设法调整生态系统的能量流动关系,使能量流向对人类最有益的部分。

能量流动和物质循环之间互为因果、相辅相成,具有不可分割的联系。

56.生态系统的稳定性包括抵抗力稳定性和恢复力稳定性。一般情况下,二者的关系是相反

的,即抵抗力稳定性大,则恢复力稳定性就小,反之亦是。

生态系统之所以具有抵抗力稳定性,是因为生态系统内部具有一定的自动调节能力。一般地说,生态系统的成分越单纯,营养结构越简单,自动调节能力就越小,抵抗力稳定性就越低。相反,生态系统的成分越多样,营养结构越复杂,自动调节能力就越大,抵抗力稳定性就越高。

57.生物多样性包括遗传多样性、物种多样性和生态系统多样性。生物多样性是人类赖以生存和发展的基础。

我们强调自然保护,并不意味着禁止开发和利用。而是反对无计划地开发和利用。

58.可持续发展的生态农业的生产模式由传统的“原料-产品-废料”改变为现代的“原料-

产品-原料-产品”。

生态学的原理是发展生态农业的主要理论基础:生态系统中能量多级利用和物质循环再生;生态系统中的各种生物之间存在着相互依存、相互制约的关系。

59.生物圈的形成是地球的理化环境与生物长期相互作用的结果,是地球上生物与环境共同进

化的产物,是生物与无机环境相互作用而形成的统一整体。

生物圈可以说在物质上是一个自给自足的系统。

60.稳态是人体进行正常生命活动的必要条件,是通过人体自身的条件来实现的。

人体内水和无机盐的平衡,是在神经和激素共同作用下,主要通过肾脏来完成的。

61.人体的营养物质具有三方面的功能:提供能量;提供构建和修复机体组织的物质;提供调节机体生理功能的物质。

62.免疫可以分为非特异性免疫和特异性免疫。

在特异性免疫中发挥免疫作用的主要是淋巴细胞。免疫器官、免疫细胞、免疫物质共同组成人体的免疫系统,这是特异性免疫的物质基础。

特异性免疫反应大体上都可以分为三个阶段:感应阶段是抗原处理、呈递和识别阶段;反应阶段是B细胞、T细胞增殖分化,以及记忆细胞形成的阶段;效应阶段是效应T细胞、抗体和淋巴因子发挥免疫效应的阶段。

63.真核细胞的基因结构要比原核细胞的基因结构复杂。真核细胞的基因结构的主要特点是:编码区是间隔的,不连续的。也就是说:能够编码蛋白质的序列(外显子)被不能够编码蛋白质的序列(内含子)分割开来,成为一种断裂的形式。

64.人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列,其主要内容包括绘制人类基因组的四张图:遗传图、物理图、序列图、转录图。

65.细胞内的各种生物膜不仅在结构上有一定的联系,在功能上也是既有明确的分工,又有紧密的联系。各种生物膜相互配合、协同工作,才使得细胞这台高度精密的生命机器能够持续、高效地运转。

66.植物细胞工程通常采用的技术手段有植物组织培养和植物体细胞杂交等。这些技术的理论基础是植物细胞的全能性。

高度分化的植物细胞只有脱离了植物体,在一定的外部因素作用下,经过细胞分裂形成愈伤组织,才表现出全能性。

植物体细胞杂交能克服远缘杂交不亲和的障碍,从而培育出作物新品种。

67.动物细胞工程常用的技术手段有:动物细胞培养、动物细胞融合、单克隆抗体、胚胎移植、核移植等。

68.微生物包括病毒界、原核生物界、真菌界、原生生物界的生物。

69.人类几种遗传病及显隐性关系:

类别名称

单基因遗传病常染色体

遗传隐性白化病

先天性聋哑

苯丙酮尿症

显性多指

软骨发育不全

性(X)染色体遗传隐性红绿色盲、血友病

显性抗维生素D佝偻病

多基因遗传病唇裂、无脑儿、原发性高血压、

青少年型糖尿病

染色体异常遗传病常染色体病数目改变21三体综合症(先天愚型)

结构改变猫叫综合症

性染色体病性腺发育不良

必修教材结论性语句总结

1.生物体具有共同的物质基础和结构基础。

2.从结构上说,除病毒以外,生物体都是由细胞构成的。细胞是生物体的结构和功能的基本单位。

3.新陈代谢是活细胞中全部的序的化学变化总称,是生物体进行一切生命活动的基础。

4.生物体具应激性,因而能适应周围环境。

5.生物体都有生长、发育和生殖的现象。

6.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。

7.生物体都能适应一定的环境,也能影响环境。

第一章生命的物质基础

8.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。

9.组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大,这个事实说明生物界与非生物界还具有差异性。

10.各种生物体的一切生命活动,绝对不能离开水。

11.糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。

12.脂类包括脂肪、类脂和固醇等,这些物质普遍存在于生物体内。

13.蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。

14.核酸是一切生物的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极重要作用。

15.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。

第二章生命的基本单位——细胞

16.活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。

17.细胞壁对植物细胞有支持和保护作用。

18.细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质和一定的环境条件。

19.线粒体是活细胞进行有氧呼吸的主要场所。

20.叶绿体是绿色植物叶肉细胞中进行光合作用的细胞器。

21.内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。

22.核糖体是细胞内合成为蛋白质的场所。

23.细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。

24.染色质和染色体是细胞中同一种物质在不同时期的两种形态。

25.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。

26.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。

27.细胞以分裂是方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。

28.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

29.细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到最大限度。

30.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。

第三章生物的新陈代谢

31.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。

32.酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA。

33.酶的催化作用具有高效性和专一性;并且需要适宜的温度和pH值等条件。

34.ATP是新陈代谢所需能量的直接来源。

35.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。

36.渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。

37.植物根的成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。

38.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。

39.高等多细胞动物的体细胞只有通过内环境,才能与外界环境进行物质交换。

40.正常机体在神经系统和体液的调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫稳态。稳态是机体进行正常生命活动的必要条件。

41.对生物体来说,呼吸作用的生理意义表现在两个方面:一是为生物体的生命活动提供能量,二是为体内其它化合物的合成提供原料。

第四章生命活动的调节

42.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段。

43.生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般来说,低浓度促进生长,高浓度抑制生长。

44.在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。

45.植物的生长发育过程,不是受单一激素的调节,而是由多种激素相互协调、共同调节的。

46.下丘脑是机体调节内分泌活动的枢纽。

47.相关激素间具有协同作用和拮抗作用。

48.神经系统调节动物体各种活动的基本方式是反射。反射活动的结构基础是反射弧。

49.神经元受到刺激后能够产生兴奋并传导兴奋;兴奋在神经元与神经元之间是通过突触来传递的,神经元之间兴奋的传递只能是单方向的。

50.在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。

51.动物建立后天性行为的主要方式是条件反射。

52.判断和推理是动物后天性行为发展的最高级形式,是大脑皮层的功能活动,也是通过学习获得的。

53.动物行为中,激素调节与神经调节是相互协调作用的,但神经调节仍处于主导的地位。

54.动物行为是在神经系统、内分泌系统和运动器官共同协调下形成的。

第五章生物的生殖和发育

55.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的生存和进化具重要意义。

56.营养生殖能使后代保持亲本的性状。

57.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。

58.减数分裂过程中联会

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论