版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A. B. C. D.2.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm23.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形4.“”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为()A. B. C. D.5.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.31 B.30 C.28 D.256.某校举行课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.65m,其方差分别是S甲2=3.8,S乙2=3.4,则参赛学生身高比较整齐的班级是()A.甲班 B.乙班 C.同样整齐 D.无法确定7.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A. B. C. D.128.下列函数(1)y=πx;(2)y=2x-1;(3);(4)y=x2-1中,是一次函数的有()A.4个 B.3个 C.2个 D.1个9.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90° B.AC=BD C.∠OBC=∠OCB D.AO⊥BD10.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元 B.6.8元 C.7.5元 D.8.6元11.一组数据3,4,4,5,5,5,6,6,7众数是()A.4 B.5 C.6 D.712.已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<b<a D.c<a<b二、填空题(每题4分,共24分)13.如图所示,为了安全起见,要为一段高5米,斜边长13米的楼梯上红地毯,则红地毯至少需要________米长。14.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为_______.15.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值为____.16.若二次根式有意义,则的取值范围是______.17.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=_____.18.如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.三、解答题(共78分)19.(8分)如图1,将纸片折叠,折叠后的三个三角形可拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_______,__________;___________.(2)将纸片按图3的方式折叠成一个叠合矩形,若,,求的长;(3)如图4,四边形纸片满足,,,,,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出、的长.20.(8分)如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积21.(8分)如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF(2)判断四边形MENF是何特殊的四边形?并对结论给予证明;22.(10分)计算(1)分解因式:a2-b2+ac-bc(2)解不等式组,并求出不等式组的整数解之和.23.(10分)有一个四边形的四边长分别是,且有.求证:此四边形是平行四边形.24.(10分)求证:菱形的对角线互相垂直.25.(12分)如图,四边形ABCD是菱形,BE⊥AD,BF⊥CD,垂足分别为点E,F.1求证:BE=BF;2当菱形ABCD的对角线AC=8,BD=6时,求BE的长.26.历下区某学校组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有,队伍8:00从学校出发。苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,结果同时到达基地.求大巴车与小车的平均速度各是多少?
参考答案一、选择题(每题4分,共48分)1、B【解析】关于x轴对称的点的坐标,一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.∴.解不等式①得,a>-1,解不等式②得,a<,所以,不等式组的解集是-1<a<.故选B.2、D【解析】
根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.
∴矩形ABCD的面积是:1×5=10cm1;
当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面积是:5×3=15cm1.
故矩形的面积是:10cm1或15cm1.
故选:D.【点睛】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.3、C【解析】
平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.4、D【解析】
根据科学计数法的表示方法即可求解.【详解】0.0000025=故选D.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.5、A【解析】
由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n个图形矩形的个数是5n+1把n=6代入求出即可.【详解】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,∴第n个图形矩形的个数是5n+1当n=6时,5×6+1=31个.故选:A.【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.6、B【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=3.8,S乙2=3.4,∴S甲2>S乙2,∴参赛学生身高比较整齐的班级是乙班,故选:B.【点睛】此题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7、B【解析】
根据正方形的边长以及七巧板的特点先求出七巧板各个图形的边长,继而即可求得六边形的周长.【详解】解:如图,七巧板各图形的边长如图所示,则六边形EFGHMN的周长为:2+2++2+2+2++2=10+4,故选B.【点睛】本题考查了正方形的面积、七巧板、周长的定义等,七巧板由下面七块板组成(完整图案为一正方形):五块等腰直角三角形(两块小型小三角形,一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,熟知七巧板中各块中的边长之间的关系是解题的关键.8、C【解析】一次函数解析式形如+b,据此可知(1)y=πx,(2)y=2x-1是一次函数,共有2个,故选C9、D【解析】
依据矩形的定义和性质解答即可.【详解】∵ABCD为矩形,∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;∴OB=OC,∴∠OBC=∠OCB,故C正确,与要求不符.当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.故选:D.【点睛】本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.10、B【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【详解】售价应定为:≈6.8(元);故选B.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.11、B【解析】
先把数据按大小排列,然后根据众数的定义可得到答案.【详解】数据按从小到大排列:3,4,4,5,5,5,6,6,7,数据5出现3次,次数最多,所以众数是5.故选B.【点睛】此题考查众数,难度不大12、D【解析】
先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.【详解】∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,∴,∴b<a<c.故选B.【点睛】考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每题4分,共24分)13、17【解析】
地毯的长度实际是所有台阶的宽加上台阶的高,平移可得,台阶的宽之和与高之和构成了直角三角形的两条直角边,因此利用勾股定理求出水平距离即可.【详解】根据勾股定理,楼梯水平长度为:=12米,则红地毯至少要12+5=17米长.【点睛】本题考查了勾股定理的应用,是一道实际问题,解题的关键是从实际问题中抽象出直角三角形,利用平移性质,把地毯长度分割为直角三角形的直角边.14、(1,2)【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.【详解】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),
∴线段AB向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=1+1=2,
点B1的坐标为(1,2),
故答案为(1,2),【点睛】本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.15、1【解析】
先求得点P(﹣1,4)关于y轴的对称点(1,4),再把对称点代入一次函数y=x+b即可得出b的值.【详解】解:∵点P(﹣1,4)关于y轴的对称点(1,4),∴把(1,4)代入一次函数y=x+b,得1+b=4,解得b=1,故答案为1.【点睛】本题考查了一次函数图象上点的坐标特征,以及关于y轴对称的点的坐标特征,掌握一次函数的性质和关于y轴对称的点的坐标特征是解题的关键.16、【解析】
根据二次根式有意义的条件即可求解.【详解】依题意得a+1≥0,解得故填:【点睛】此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.17、40°【解析】
首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故答案为40°.【点睛】本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.18、(4,0)【解析】
根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.【详解】解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,∴点D的坐标为:(0,8),∴OD=8,∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,∴CD=5×2=10,∴AD=10,∵∠AOD=90°,OD=8,AD=10,∴AO=,∵AB=10,∴OB=10−AO=10−6=4,∴点B的坐标为(4,0),故答案为:(4,0)【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题(共78分)19、(1)AE,GF,1:2;(2)13;(3)AD=1,BC=7;
【解析】
(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;
(2)由矩形的性质和勾股定理求出FH,即可得出答案;
(3)由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM-GM=1,BC=BM+CM=7;【详解】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;
由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,
∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,
∴S矩形AEFG=S▱ABCD,
∴S矩形AEFG:S▱ABCD=1:2;
故答案为:AE,GF,1:2;
(2)∵四边形EFGH是矩形,
∴∠HEF=90°,
∴FH==13,
由折叠的性质得:AD=FH=13;
(3)图5所示:如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,
∵四边形EFMB是叠合正方形,
∴BM=FM=4,
∴GM=CM==3,
∴AD=BG=BM-GM=1,BC=BM+CM=7;【点睛】此题考查折叠的性质,正方形的性质,勾股定理,梯形面积,解题关键在于掌握折叠的性质.20、(1)①见解析;②;(2)△BEG的面积为48﹣6或48+6【解析】
(1)①由矩形的性质得出,得出,由旋转的性质得:,证出,即可得出;②设,则,在中,由勾股定理得出方程,解得:,在中,由勾股定理得出,得出,证出,得出即可;(2)分情况讨论:①过点作于,证明,得出,,在中,由勾股定理得出,得出,得出,得出的面积的面积;②同①得:,,得出,得出的面积的面积即可.【详解】(1)①证明:四边形是矩形,,,由旋转的性质得:,,;②解:设,则,在中,,解得:,在中,,,,,又,,;(2)解:分情况讨论:①如图2所示:过点作于,则,在和中,,,,,在中,,,,的面积的面积;②如图3所示:同①得:,,,的面积的面积;综上所述,的面积为或.【点睛】本题是四边形综合题目,考查了矩形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、三角形面积、分类讨论等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.21、(1)见解析;(2)平行四边形,证明见解析【解析】
(1)根据已知条件证明四边形DEBF为平行四边形,即可得到;(2)证明△FNC≌EMA,得到FN=EM,又FN∥EM,可得结果.【详解】解:(1)证明:在平行四边形ABCD中,AB∥CD,AB=CD,∵E,F分别是AB,CD的中点,∴DF=BE,DF∥BE,∴四边形DEBF为平行四边形,∴DE∥BF;(2)MENF为平行四边形,理由是:如图,∵DE∥BF,∴∠FNC=∠DMC=∠AME,又∵DC∥AB,∴∠ACD=∠CAB,又CF=AE=AB=CD,∴△FNC≌EMA(AAS),∴FN=EM,又FN∥EM,∴MENF为平行四边形.【点睛】本题考查了平行四边形的性质和判定,本题考查了平行四边形的判定和性质,难度不大,解题的关键是要找到合适的全等三角形.22、(1)(a-b)(a+b+c);(2)0≤x≤3,1【解析】
(1)利用分组分解法先分组,再提公因式和利用平方差公式分解,最后提公因式a-b可解答;(2)解不等式组,并找出整数解,相加可解答.【详解】(1)a2-b2+ac-bc,=(a2-b2)+(ac-bc),=(a+b)(a-b)+c(a-b),=(a-b)(a+b+c);(2),解不等式①得:x≤3,解不等式②得:x≥0,∴不等式组的解集为:0≤x≤3,∴不等式组的整数解为:0、1、2、3,和为0+1+2+3=1.【点睛】本题考查了提取公因式法和分组分解法因式分解、解不等式组,(1)中难点是采用两两分组还是三一分组,a2-b2正好符合平方差公式,应考虑为一组,ac-bc可提公因式为一组,(2)的关键是准确求出两个不等式的解集.23、见详解.【解析】
由题意可得出,易得,根据平行四边形的判定定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师政治思想及职业道德方面的考核报告
- 2024年淮南联合大学高职单招职业技能测验历年参考题库(频考版)含答案解析
- 乌鲁木齐市八年级上学期期末地理试题及答案
- 二零二五年旅游开发项目合同2篇
- 2024年陕西省妇幼保健院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年河南艺术职业学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年阜阳市第三人民医院阜阳市中心医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年长春市妇产科医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年江西工商职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年江汉艺术职业学院高职单招职业适应性测试历年参考题库含答案解析
- 班组安全生产标准化管理手册
- 摄影初级培训教程课件
- 幼儿园装修合同
- GB/T 42615-2023在用电梯安全评估规范
- GB/T 31167-2023信息安全技术云计算服务安全指南
- 2023年成都市生物毕业会考知识点含会考试题及答案
- 药品生产质量管理规范-细胞治疗产品附录
- 《数学史选讲》完整版
- 高考必背120个文言实词
- 《扣件式钢管脚手架安全技术规范》JGJ130-2011
- 车辆事故私下解决协议书
评论
0/150
提交评论