正切函数图像与性质(教学案)_第1页
正切函数图像与性质(教学案)_第2页
正切函数图像与性质(教学案)_第3页
正切函数图像与性质(教学案)_第4页
正切函数图像与性质(教学案)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§正切函数的图像性质【教材分析】正切函数的图象和性质》它承正、余弦函数,后启必修五中的直线斜率问题。研究正切函数的图象与性质过程不仅是对正弦曲线研讨方法的一种再现更是一种提升同时又为后续的学习奠定了基石教材单刀直入,直接进入画图工作,没有给出任何提示。正切函数与正弦函数在研究方法上类似采用以类比的方式学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。教材上直接圈定了区间(

,2

),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法样仅挥了学生的能动性强动脑手图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质比大小的题型启发学生从代数和几何两种角度看问题。【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同这养成学在画图时必须全面考虑问题本着课改理念养学生对知识的勇于探索精神生自会正切曲线的获得过程样学生的动手实践能力有了提高体到学习数学的乐趣据教学要求及学生现有的认知水平制定以下教学目标:会用单圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。首先学自主绘图过投影仪纠正图像影整的正确图象后让学生观察,类比正弦,探索知识。在得到切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。【教学重点难点】教学重点:正切函数的图象及其主要性质。教学难点:利用正切线画出函数=tanx的图象,对直线x=

k

2

,k是x的渐近线的理解,对单调性这个性质的理解。【学情分析】知识结构函数中我们学习了如何研究函数对正弦函数的研究又再一次做了一个模板所学生已经具备了一定绘图技能类推理画出图象并过观察图象,总结性质的能力但画正切函数图象还有许多需要注意的地方这又提升了学生分析问题的能力及严密认真的态度。心理特征:高一学生已经初步形成了是非观,具备了分辨是非的能力及语言表达能力。能够通过讨论作流论到正确的知识在处理问题时学生很容想当然用事,考虑问题不深入,往往会造成错误的结果。【教学方法】.学案导学:见后面的学案。.授课教学基本环节:预习检查总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】.学生的学习准备:预习“正切函数的图像与性质把作图的方法与性质的/

导。.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。【课时安排1课【教学过程】一预检、结惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。二复习入展目。问题:就我们前面所学的内容中,正切函数与正余弦函数的有何区别?三角函数

x

大家怎么知道定义域RkZ值域[-[-R周期性及周期2奇偶性奇偶奇忆正切线在每一个象限的画法。

正切函数的值域是通过单位圆中的正切线可以得到。那请同学们回(设计意图①通过此问题确定本节课的一个基调比学习②通过此问题来复习我们已经研究过的正切函数的性质;③通过比较让学生了解正切与正弦的区别,在画图像的时候注意区别因在作图时必用正切线的知识以在此做一个相应的复习和准备工作,顺应学生的思维在知识链接处提问)问题2我们用什么样的方式得到正余弦函数的图像的?利用单位圆内的正弦线,得到在一个周期,[,2]内的图象,再利用周期性得在定义域内的图象。问题3:请同学们根据所学知识计一个研究正切函数图像与性质的方案。方案:第一步:画出正切函数的在一个周期内的图象;第二步:将图象向左、向右平移拓展到整个定义域上去;第三步:根据图象总结性质。三合探、讲拨①请同学们解决方案的第一步,先画出x在个期内的简图。给学生充足的时间与空间发挥学生的主动性样不仅提高了学生的动手实践能力培养了学生对数学的兴趣。注:有的学生可能会想到利用函数的奇偶性来画图,很多学生会画出教师暂时不予评价,等待学生形成图象。

)的图象,②教师用投影仪展示作图结果,学生之间相互评价,指出优点和不足之处,并鼓励学生阐述自己的观点师直接在投仪上纠正学生错误的图像

图与

,的图像进行比较来说明只是周期的选择不同,拓展到整个定义域上也是一致的。通过学生之间的点评与总结引渐近线并同学们总结出要出一个周期内的图象,首先,选择哪段区间较好,其次,在画图象的过程中应该注意什么?③投影仪展示完整图像的规范作图顺路的作用画出在定义域上的图象。(设计意图在做好整体知识方的铺垫后生完全有能力自己得到图象且通过交流发现自己的问题以整体做了一个这样的处理根据知识的发生发展和获得结论这个过程,在最后给学生展示标准的图象以留下正确和深刻的印象)④总结正切函数的性质分小组根据正切函数图象去验证正切函数已有的性质找其它的性质(主要就指单调性,若学生提及对称性就一起分析,若学生不提也不加以讨论,/

7tan7tan因为高考要求没有对对称性的涉及一组总结后它各小组补充或改正培学生之间的团结协作能力及勇于探索的精神。有部分学生会得到正切函数在定义域上是单调增函数的结论,所以为了突破这个难点,另外又设计了三道判断题让学生小组讨论形成结果。判断下列语句是否正确:在义域上是单调增函数;(2在一象限是单调增函数;(3

8

,而y是调增函数,

16在整体形成应该如何理解正切函数的单调性的基础上,再完成两个比大小的问题。不求值,判断下列各式的大小①tan138tan143,②tan—

13π4

)(

35

)引导学生从数和形两个角度来完成以直接看图象可以转化到同一个单调区间也可以利用三角函数线来比大小。(设计意图:根据原来的教学经验,学生在后续使用这个性质的时候经常会认为正切在定义域上是单调增函数,或者对第一象限的认识就认为是0~

2

,所以准备这些辨析题就是让学生缩短这个反复讲解的过程下正确的印象比大小是检验能否认识三角单调性的一个很好的工具,诱导公式的使用又将前后内容联系起来)四例分例讨论函数

ytan

x

4

质解析:考察正切函数图像,该图像可通过正切函数图像向左平移

4

单位得到解:定义域:

xR

4

,z

值域:奇性:非奇非偶函数单调性:在

k

,函数4点评:本题考察了图像的平移变换,培养学生的作图能力与通过图像观察性质的能力变式训练求数ytan2x的义域、值域和周期解:要使函数y=tan2x有义,必须且只须2≠+π,k∈Z即x≠

,∈Z∴数yx的义为{R,x≠,∈Z(2设=x,由x≠

,∈}知t+π,∈∴y=的值域为(-∞,+∞)即y=x的域(-∞,+∞)(3由(x+

)=tan2x+)=∴=tan2x的期为

./

33<tan,tan<tan与tan(33<tan,tan<tan与tan()=-tan3<tan,tan>tan(-)例求函数y=的定义域tanx1解析:通过图像解三角不等式解:x≠1且≠π+,k∈Z得x≠k+且≠+,∈Z4则定义域为{x∈R且≠+且≠+,k∈Z}点评:通过本题培养学生数形结合的能力变式训练y=

解:x+1≥,即tanx≥-,得k-≤xπ+,∈则定义域为{k-≤<π+,k∈Z}2例比较tan

与tan的小解析:通过诱导公式把角度化为同一单调区间,利用正切函数单调性比较大小解:tan=tan∵<

<<又y=tanx在0,)单调递增∴tan

7点评:注意诱导公式的准确应用变式训练tan

解:tan=-tan,tan()=-tan5

3∵0<<又∵=tan在0,上单调递增5∴tan

135由学生分析,得到结论,其他学生帮助补充、纠正完成。五反总,堂测教师组织学生反思总结本节课的主要内容,并进行当堂检测。课堂小结:、数学知识:正切函数的定义与图像,定义域、值域和周期性、奇偶性、单调性。、数学思想方法:数形结合。达标检测:ytan(3x函4(A)(B)3

)的周期是2

(C)

3

(D)

6

(

)ytan()函数4{|,x}(A)4

的定义域为

(B)

{|x

4

,x}

(

)/

(C)

{x

4

,Z}

(D)

{|k

34

,,Z}下列函同时满足(在(

2

)上递增,(2)2

为周期(3)奇函数的是

()(A)

ytan

(B)

(C)

ytanx2

(D)

yx的小关系______________________.5.出下列命:(1)函数y不周期函数;(2)数的期是(3)函数y在义域内是增函数;(4)函数πx是偶函数;(5)函数y=tan(2+π图的一个对称中心(π/6,0)其中正确命题的序号_注:把你认为正确命的序号全填)6.函数y=lg(1-tanx)定义域参考答案:2.D

x

2

Z4

设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。六发学、置习(1y=|sinx|的周期变成了那y=|tanx|变成了什么?(2在书本有切余切的由来请学们仔细阅读并想为什直阴影是余切,反阴影是正切?七板设正切函数的图象及性质一、正切函数图像

例.画出正切函数的在一个周期内的图象;例2.将图象向左、向右平移拓展到整个定义域上去;例3二正切函数的性质根图象总结性质八教反(1根据知识的前后联系在本节课设计时主要采取类比学习,学生自己动手绘图、自己研究性质自完成辨析、判断例题的过程。在学生能够自己独立完成的地方退幕后起到一个推波助澜的作用和汇总学生意见,形成正确知识和方法的作用。(2据学生学习知识的发生发展成熟过程生成图象的过程中让学生自己先独立画,然后小组交流再投影仪来纠学生错误图象较不同周期的图象最后用投影仪展现定义域内的标准图象,充分体现了学生的主体性,让学生活起来。九学设(见下/

§正切函数的图像性质课前预习学案一、预习目标利用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质二、预习内容1.画出下列各角的正切线:类比正函数我们用几何法做出正切函数

ytan

图象:把上述象向左右扩展得到正切函数

ytanx

x

2

的图象切线”观察正曲线,回答正切函数的性质:定义域:最值:周期性:单调性:三、提出疑惑

值域:渐近线:奇偶性图像特征:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点

疑惑内容课内探究学案一、学习目标:会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。学习重难点:正切函数的图象及其主要性质。二、学习过程/

1313例讨论函数

y

x

4

质变式训练求数=tan2x的义域、值域和周期例求函数y=

tanx

的定义域变式训练y=

tanx例比较tan

与tan的大小变式训练tan与(-)5三、反思总结、数学知识:、数学思想方法:四、当堂检测一、选择题函

ytan(3x

4

)

的周期是

()(A)

(B)(C)(D)326函数

ytan(

4

)

的定义域为

()(A)

{|

4

,x}

(B)

{x

4

,x}(C)

{x

4

,xZ}

(D)

{|k

34

,xR,kZ}下列函同时满足(1)在

2

)上递增(2)以2

为周期(3)是奇函数的是

()(A)

ytanx

(B)

cosx

(C)

ytanx2

(D)

y二、填空题的小关系是_______________________.给出下命:(1函数不周期函数;函数的期是(3)函数y在义域内是增函数;(4)函数y=sin(5/2+x是偶函;(5)函数y=tan(2+π图象的一个对称中心π其中正确命题的序号_注:把你认为正确命题的号全填)三、解答题求函数y=lg(1-tanx)的定义域一、选择题1、

ytanx(x

2

,

在定义域上的单调性为()/

A.在整个定义域上为增函数B.在整个定义域上为减函数C.在每一个开区间

(

2

2

kZ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论