古典概型(数学统计学术语)_第1页
古典概型(数学统计学术语)_第2页
古典概型(数学统计学术语)_第3页
古典概型(数学统计学术语)_第4页
古典概型(数学统计学术语)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

古典概型(数学统计学术语)数学统计学术语01定义古典概型的判断特点概率公式目录03020405基本步骤举例模型的转换目录0706基本信息古典概型也叫传统概率、其定义是由法国数学家拉普拉斯(Laplace)提出的。如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。定义定义(1)试验中所有可能出现的基本事件只有有限个;(2)试验中每个基本事件出现的可能性相等。具有以上两个特点的概率模型是大量存在的,这种概率模型称为古典概率模型,简称古典概型,也叫等可能概型。特点基本事件的特点古典概型的特点特点古典概型的特点有限性(所有可能出现的基本事件只有有限个)等可能性(每个基本事件出现的可能性相等)基本事件的特点(1)任何两个基本事件是互斥的。(2)任何事件(除不可能事件)都可以表示成基本事件的和。古典概型的判断古典概型的判断一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。概率公式概率公式P(A)==A包含的基本事件的个数m/基本事件的总数n如果一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包含的结果有m个,那么事件A的概率为P(A)==A包含的基本事件的个数m/基本事件的总数n

基本步骤基本步骤(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=m/n,求出P(A)。模型的转换模型的转换古典概率模型是在封闭系统内的模型,一旦系统内某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。概率模型会由古典概型转变为几何概型。举例举例投掷一个质地均匀,形状规范的硬币,正面和反面出现的概率是一样的,都是1/2。很多人会有问,为什么正面和反面出现的概率是一样的?显然,硬币是质地均匀,形状规范的,哪一面都不会比另一面有更多的出现机会,正面和反面出现的概率是一样的。这称为古典概型的对称性,体育比赛经常用到这个规律来决定谁开球,谁选场地。为了解释这个现象,在历史上,有很多大师对这个问题进行过验证结果可以看出,随着次数的不断增加,正面出现的频率越来越接近50%,我们也有理由相信,随着次数的继续增加,正面和反面出现的频率将固定在1/2处,即正面和反面出现的概率都为1/2。这是个典型的古典概型的例子,它的特点是:实验结果只有有限个,而且每个实验结果出现的概率是一样的。正因为这两个特点,我们能够很容易算出来每个实验结果出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论