数学《反证法》课件_第1页
数学《反证法》课件_第2页
数学《反证法》课件_第3页
数学《反证法》课件_第4页
数学《反证法》课件_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2反证法经过证明的结论

一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.

特点:执果索因.用框图表示分析法得到一个明显成立的结论…复习思考题:甲、乙、丙三箱共有小球384个,先由甲箱取出若干放进乙、丙两箱内,所放个数分别为乙、丙箱内原有个数,继而由乙箱取出若干个球放进甲、丙两箱内,最后由丙箱取出若干个球放进甲、乙两箱内,方法同前.结果三箱内的小球数恰好相等.求甲、乙、丙三箱原有小球数甲:208个,乙:112个,丙:64个思考?A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?分析:假设C没有撒谎,则C真.-----那么A假且B假;由A假,知B真.这与B假矛盾.那么假设C没有撒谎不成立;则C必定是在撒谎.

反证法:假设命题结论的反面成立,经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。反证法的思维方法:正难则反反证法的基本步骤:(1)假设命题结论不成立,即假设结论的反面成-------立;(2)从这个假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,从而肯定命题的结------论正确归缪矛盾:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;(3)自相矛盾。应用反证法的情形:

(1)直接证明困难;(2)需分成很多类进行讨论.(3)结论为“至少”、“至多”、“有无穷多个”---类命题;(4)结论为“唯一”类命题;例1:用反证法证明:如果a>b>0,那么P例3:证明:圆的两条不全是直径的相交弦不能互相平分.已知:在⊙O中,弦AB、CD相交于P,且AB、CD不全是直径

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论