浙江省杭州市开发区重点名校2021-2022学年中考数学押题卷含解析_第1页
浙江省杭州市开发区重点名校2021-2022学年中考数学押题卷含解析_第2页
浙江省杭州市开发区重点名校2021-2022学年中考数学押题卷含解析_第3页
浙江省杭州市开发区重点名校2021-2022学年中考数学押题卷含解析_第4页
浙江省杭州市开发区重点名校2021-2022学年中考数学押题卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B. C. D.2.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B.1 C. D.3.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的D.据此估计全校1000名八年级同学,选择科目B的有140人4.计算(﹣3)﹣(﹣6)的结果等于()A.3B.﹣3C.9D.185.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m> B.m C.m= D.m=6.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′7.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.8.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y19.关于x的方程12x=kA.0或1210.若分式有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1 D.x≠0二、填空题(本大题共6个小题,每小题3分,共18分)11.肥皂泡的泡壁厚度大约是,用科学记数法表示为_______.12.在反比例函数图象的每一支上,y随x的增大而______用“增大”或“减小”填空.13.已知是二元一次方程组的解,则m+3n的立方根为__.14.计算:(π﹣3)0+(﹣)﹣1=_____.15.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.16.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.三、解答题(共8题,共72分)17.(8分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.18.(8分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.19.(8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;从中任意抽取1个球恰好是红球的概率是;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.20.(8分)如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.(1)求证:与相切;(2)连接,求的值.21.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?22.(10分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)23.(12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;若AD=DC=2,求AB的长.24.△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.2、B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故选B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.3、B【解析】

A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.4、A【解析】原式=−3+6=3,故选A5、C【解析】试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=.故选C.6、C【解析】

根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【详解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故选C.【点睛】本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.7、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.8、D【解析】试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.9、A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程无解,∴当整式方程无解时,2k-1=0,k=12当分式方程无解时,①x=0时,k无解,②x=-3时,k=0,∴k=0或12故选A.10、C【解析】

分式分母不为0,所以,解得.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11、7×10-1.【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、减小【解析】

根据反比例函数的性质,依据比例系数k的符号即可确定.【详解】∵k=2>0,∴y随x的增大而减小.故答案是:减小.【点睛】本题考查了反比例函数的性质,反比例函数y=(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.13、3【解析】

把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把代入方程组得:相加得:m+3n=27,则27的立方根为3,故答案为3【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.14、-1【解析】

先计算0指数幂和负指数幂,再相减.【详解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.15、【解析】

根据正弦和余弦的概念求解.【详解】解:∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案为【点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.16、一【解析】∵一元二次方程x2-2x-m=0无实数根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.

故答案是:一.三、解答题(共8题,共72分)17、(1)见解析;(2)CD=;(3)见解析;(4)【解析】试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;

(2)结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;

拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.试题解析:迁移应用:(1)证明:如图2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)结论:CD=AD+BD.

理由:如图2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD•cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.

∵四边形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等边三角形,

∴BA=BD=BC,

∵E、C关于BM对称,

∴BC=BE=BD=BA,FE=FC,

∴A、D、E、C四点共圆,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等边三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,FH=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.18、(1)证明见解析(2)【解析】

(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.19、(1)必然,不可能;(2);(3)此游戏不公平.【解析】

(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平.【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键.20、(1)见解析;(2)【解析】

(1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值.【详解】(1)连接,.∵是的直径,弦于点,∴,.∵,∴.∴为等边三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴与相切.(2)连接EF,作于点.设,则,.∵与相切,∴.又∵,∴.又∵,∴四边形为平行四边形.∵,∴四边形为菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.21、(Ⅰ)28.(Ⅱ)平均数是1.52.众数为1.8.中位数为1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22、【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23、(1)证明见解析;(2)AB=【解析】

(1)证明:∵,DE⊥AC于点F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.连接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=24、(1)证明见解析;(2)证明见解析;(3)CE=.【解析】

(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.(2)连接OB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论