江苏省苏州市虎丘区立达中学2023年数学八年级第二学期期末统考模拟试题含解析_第1页
江苏省苏州市虎丘区立达中学2023年数学八年级第二学期期末统考模拟试题含解析_第2页
江苏省苏州市虎丘区立达中学2023年数学八年级第二学期期末统考模拟试题含解析_第3页
江苏省苏州市虎丘区立达中学2023年数学八年级第二学期期末统考模拟试题含解析_第4页
江苏省苏州市虎丘区立达中学2023年数学八年级第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,有一个矩形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF的长为()A.5 B.6 C.7 D.82.如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A.4 B.8 C.12 D.163.若是完全平方式,则符合条件的k的值是()A.±3 B.±9 C.-9 D.94.如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE+DC=DE其中正确的个数是()A.1 B.2 C.0 D.35.一次函数y2x2的大致图象是()A. B. C. D.6.如果一个多边形的内角和等于720°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形7.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为()A.30° B.40° C.50° D.45°8.如图,矩形中,对角线、交于点.若,,则的长为()A.6 B.5 C.4 D.39.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定10.将一元二次方程-6x-5=0化成=b的形式,则b等于()A.4 B.-4 C.14 D.-14二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°,AB=2,则BC的长为___________.12.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.13.周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km;②他在少年宫一共停留了3h;③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).14.一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为______.15.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.16.在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?17.如果的平方根是,则_________18.如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.三、解答题(共66分)19.(10分)化简:20.(6分)化简:,再从不等式中选取一个合适的整数代入求值.21.(6分)实践活动小组要测量旗杆的高度,现有标杆、皮尺.小明同学站在旗杆一侧,通过观视和其他同学的测量,求出了旗杆的高度,请完成下列问题:(1)小明的站点,旗杆的接地点,标杆的接地点,三点应满足什么关系?(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点与点在同直一线上为止;(3)他们都测得了哪些数据就能计算出旗杆的高度?请你用小写字母表示这些数据(不允许测量多余的数据);(4)请用(3)中的数据,直接表示出旗杆的高度.22.(8分)已知:如图,四边形中,分别是的中点.求证:四边形是平行四边形.23.(8分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).请回答:的值为______.(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.24.(8分)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.25.(10分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.26.(10分)小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据矩形的性质得到CD=AB=8,根据勾股定理求出CF,根据勾股定理列方程计算即可.【详解】∵四边形ABCD是矩形,∴CD=AB=8,∴DE=CD﹣CE=5,由折叠的性质可知,EF=DE=5,AF=CD=BC,在Rt△ECF中,CF==4,由勾股定理得,AF2=AB2+BF2,即(BF+4)2=82+BF2,解得,BF=6,故选:B.【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、D【解析】

解:∵菱形ABCD中,E,F分别是AB,AC的中点,EF=2,∴BC=2EF=2×2=1.即AB=BC=CD=AD=1.故菱形的周长为1BC=1×1=2.故答案为2.【点睛】本题考查三角形中位线定理;菱形的性质.3、D【解析】

根据是一个完全平方式,可得,据此求解.【详解】解:∵是一个完全平方式∴∴故选:D【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.4、D【解析】

①根据旋转的性质得BF=DC、∠FBA=∠C、∠BAF=∠CAD,由∠ABC+∠C=90°知∠ABC+∠FBA=90°,即可判断①;②由∠BAC=90°、∠DAE=45°知∠BAE+∠CAD=∠DAE=45°,继而可得∠EAF=∠EAD,可判断②;③由BF=DC、EF=DE,根据BE+BF>EF可判断③;④根据BE+BF=EF可判断④.【详解】∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△ADC≌△AFB,∴BF=DC,∠FBA=∠C,∠BAF=∠CAD,又∵∠ABC+∠C=90°,∴∠ABC+∠FBA=90°,即∠FBC=90°,∴BF⊥BC,故①正确;∵∠BAC=90°,∠DAE=45°,∴∠BAE+∠CAD=∠DAE=45°,∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,在△AED和△AEF中,∵,∴△AED≌△AEF,故②正确;∵BF=DC,∴BE+DC=BE+BF,∵△AED≌△AEF,∴EF=DE,在△BEF中,∵BE+BF>EF,∴BE+DC>DE,故③错误,∵∠FBC=90°,∴BE+BF=EF,∵BF=DC、EF=DE,∴BE+DC=DE,④正确;故选:D.【点睛】此题考查勾股定理,旋转的性质,全等三角形的判定,解题关键在于掌握各性质定义.5、A【解析】

先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【详解】解:∵k=2,b=-2,∴函数y=2x-2的图象经过第一、三、四象限.故选:A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.6、C【解析】试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是1.故选C.考点:多边形内角与外角.7、B【解析】

根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.【详解】延长∠BAC的角平分线AF交BC于点E,

∵AF与AB的垂直平分线DF交于点F,

∴FA=FB,

∵AB=AC,∠BAC=50°,

∴∠ABC=∠ACB=65°

∴∠BAF=25°,∠FBE=40°,

∴AE⊥BC,

∴∠CFE=∠BFE=50°,

∴∠BCF=∠FBE=40°.

故选:B.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.8、B【解析】

由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=AC=1,∠ABC=90°,∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB是等边三角形∴AB=OA=1故选:B【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.9、D【解析】

解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.10、C【解析】

解:因为x2-6x-5=0所以x2-6x=5,配方得x2-6x+9=5+9,所以,所以b=14,故选C.【点睛】本题考查配方法,掌握配方法步骤正确计算是解题关键.二、填空题(每小题3分,共24分)11、【解析】

由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.【详解】,,四边形为矩形,为等边三角形,,,在中,由勾股定理可求得.故答案为:.【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.12、x>1.【解析】把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.13、①②③【解析】分析:根据图象能够理解离家的距离随时间的变化情况进行判断即可.详解:①他家离少年宫=30km,正确;②他在少年宫一共停留了4﹣1=3个小时,正确;③他返回家时,y(km)与时间x(h)之间的函数表达式是y=﹣20x+110,正确;④当他离家的距离y=10km时,时间x=5(h)或x==(h),错误.故答案为:①②③.点睛:本题考查了一次函数的应用,根据图象能够理解离家的距离随时间的变化情况,是解决本题的关键.14、x>1【解析】

从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.【详解】解:函数y=kx+b的图象经过点(1,0),并且函数值y随x的增大而减小,所以当x>1时,函数值小于0,即关于x的不等式kx+b<0的解集是x>1.故答案为x>1.【点睛】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、6【解析】

由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.16、【解析】

设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意,得:,解得:.故y与x之间的关系式为:y=x+14.1;当x=4时,y=0.1×4+14.1=16.1.故答案为:16.1【点睛】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程17、81【解析】

根据平方根的定义即可求解.【详解】∵9的平方根为,∴=9,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.18、y=2x+1【解析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.解:由图象可知,点(0,0)、(2,4)在直线OA上,∴向上平移1个单位得到的点是(0,1)(2,5),那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,则b=1,2k+b=5解得:k=2.∴y=2x+1.故答案为:y=2x+1.点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.三、解答题(共66分)19、【解析】

先二次根式化性质和分母有理化和把二次根式为最简二次根式,利用完全平方公式将括号展开,然后合并同类二次根式即可;【详解】解:==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.20、,1【解析】

现将括号内的式子通分,再因式分解,然后约分,化简后将符合题意的值代入即可.【详解】原式选时,原式【点睛】此题考查分式的化简求值、一元一次不等式组的整数解,解题关键在于取合适的整数值求值时,要特注意原式及化简过程中的每一步都有意义.21、三点在同一条直线上;和点;答案不唯一:测量的长就能计算出旗杆的高度,设测得;【解析】

过C点作DB的平行线,与EF交于M点,与AB交于N点,测量旗杆高是根据△CME∽△CNA进行计算的,所以(1)小明的站点,旗杆的接地点,标杆的接地点,三点必须在同一直线上;(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点点与A、E点都在同直一线上为止;(3)根据相似三角形成比例测量的长就能计算出旗杆的高度,设测得;(4)根据△CME∽△CAN,写出比例式,表示出AN,然后AB=AN+BN即可得到答案【详解】如图,过C点作DB的平行线,与EF交于M点,与AB交于N点(1)小明的站点,旗杆的接地点,标杆的接地点,三点必须在同一直线上;(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点点与A、E点都在同直一线上为止;(3)根据相似三角形成比例测量的长就能计算出旗杆的高度,设测得;(4)易知△CME∽△CAN,有,CM=DF=c,EM=EF-MF=b-a,CN=DF+FB=c+d,即有,解得AN=,所以AB=【点睛】本题主要考查相似三角形的实际应用,理解实验过程构造出相似三角形是解题关键22、见解析.【解析】

连接BD,利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【详解】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.【点睛】此题主要考查了中点四边形,关键是掌握平行四边形的判定和三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23、(1);(2);(3).【解析】

(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【详解】解:(1)∵DE//BC,EF//DC,∴四边形DCFE是平行四边形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延长线于点E,由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四边形DBEC是平行四边形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵AE=AB+BE=AB+DC=5+3=8,∴AC=,求得AC=.故AC的长为.(3)AC=DF;证明:连接AE、CE,如图,∵四边形ABCD是平行四边形,∴AB//DC,∵四边形ABEF是矩形,∴AB//FE,BF=AE,∴DC//FE,∴四边形DCEF为平行四边形,∴CE=DF,∵四边形ABEF是矩形,∴BF=AE,∵BF=DF,∴DF=CE,∴AF=BE,∵四边形ABCD是平行四边形,∴AD=BC,在△FAD和△EBC中,∴△FAD△EBC(SSS),∴∠AFD=∠BEC,∴∠FEB=∠EFA=90°,∵∠EBF=60°,∠BFD=30°,∴∠DFA=90°-30°-(90°-60°)=30°,∴∠CEB=30°,∴OE=OB,∵∠EBF=60°,∴∠BEA=∠EBF=60°,∴∠AEC=60°+30°=90°,即△AEC是等腰直角三角形,∴AC=CE,∵DF=CE,∴AC=DF.故AC与DF之间的数量关系是AC=DF.【点睛】本题考查几何的综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论