湖北省荆州松滋市2022-2023学年数学八年级第二学期期末经典模拟试题含解析_第1页
湖北省荆州松滋市2022-2023学年数学八年级第二学期期末经典模拟试题含解析_第2页
湖北省荆州松滋市2022-2023学年数学八年级第二学期期末经典模拟试题含解析_第3页
湖北省荆州松滋市2022-2023学年数学八年级第二学期期末经典模拟试题含解析_第4页
湖北省荆州松滋市2022-2023学年数学八年级第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A. B.C. D.2.某边形的每个外角都等于与它相邻内角的,则的值为()A.7 B.8 C.10 D.93.如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=30°,那么∠AOB度数是(A.30° B.C.60° D.4.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米5.某小组5名同学在一周内参加家务劳动的时间如下表,关于“劳动时间”的这组数据,以下说法正确的是().劳动时间(小时)33.244.5人数1121A.中位数是4,平均数是3.74;B.中位数是4,平均数是3.75;C.众数是4,平均数是3.75;D.众数是2,平均数是3.8.6.一次函数y=kx-(2-b)的图像如图所示,则k和b的取值范围是()A.k>0,b>2 B.k>0,b<2C.k<0,b>2 D.k<0,b<27.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF8.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm9.如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为()A.3 B.4 C.5 D.610.如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B.C. D.二、填空题(每小题3分,共24分)11.用反证法证明“若,则”时,应假设________.12.化简得.13.如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是_____.14.若代数式有意义,则的取值范围为__________.15.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.16.在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.17.如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是_____________________.(只需填上一个正确的条件)18.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.三、解答题(共66分)19.(10分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.求证:四边形ACEF是平行四边形.20.(6分)化简并求值:,其中.21.(6分)如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=AB.22.(8分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.23.(8分)如图,□ABCD的对角线AC、BD相交于点O,AC平分∠BAD,DP//AC,CP//BD.(1)求证:四边形ABCD是菱形;(2)若AC=4,BD=6,求OP的长.24.(8分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;(3)求四边形EFPH的面积.25.(10分)已知城有肥料200吨,城有肥料300吨.现将这些肥料全部运往,两乡.乡需要的肥料比乡少20吨.从城运往,两乡的费用分别为每吨20元和25元;从城运往,两乡的费用分别为每吨15元和24元.(1)求,两乡各需肥料多少吨?(2)设从城运往乡的肥料为吨,全部肥料运往,两乡的总运费为元,求与之间的函数关系式,并直接写出自变量的取值范围;(3)因近期持续暴雨天气,为安全起见,从城到乡需要绕道运输,实际运费每吨增加了元(),其它路线运费不变.此时全部肥料运往,两乡所需最少费用为10520元,则的值为__(直接写出结果).26.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点

B、C,如果四边形OBAC是正方形.

(1)求一次函数的解析式。(2)一次函数的图象与y轴交于点D.在x轴上是否存在一点P,使得PA+PD最小?若存在,请求出P点坐标及最小值;若不存在,请说明理由。

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据配方法的步骤逐项分析即可.【详解】∵x2+px+q=0,∴x2+px=-q,∴x2+px+=-q+,∴.故选A.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.2、C【解析】

设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】设内角为x,则相邻的外角为x,由题意得,x+x=180°,解得,x=144°,360°÷36°=10故选:C.【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.3、C【解析】

只要证明OA=OD,根据三角形的外角的性质即可解决问题.【详解】解:∵四边形ABCD是矩形,∴OA=12AC,OD=12BD,AC=∴OA=OB,∴∠OAD=∠ODA=30°,∵∠AOB=∠OAD+∠ODA=60°.故选:C.【点睛】本题考查矩形的性质、等腰三角形的性质,三角形外角的性质等知识,解题的关键是根据矩形的性质得出OA=OB.4、B【解析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.5、A【解析】

平均数是指在一组数据中所有数据之和再除以数据的个数,结合图表中的数据即可求出这组数据的平均数了;观察图表可知,只有劳动时间是4小时的人数是2,其他都是1人,据此即可得到众数,总共有5名同学,则排序后,第3名同学所对应的劳动时间即为中位数,【详解】观察表格可得,这组数据的中位数和众数都是4,平均数=(3+3.2+4×2+4.5)÷5=3.74.故选A.【点睛】此题考查加权平均数,中位数,解题关键在于看懂图中数据6、B【解析】

根据一次函数的图象经过一、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵一次函数y=kx-(1-b)的图象经过一、三、四象限,∴k>0,-(1-b)<0,解得b<1.故选B.【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.7、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.8、D【解析】

根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【详解】解:∵D、E分别为AB、BC的中点,

∴DE=AC=5,

同理,DF=BC=8,FE=AB=4,

∴△DEF的周长=4+5+8=17(cm),

故选D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9、A【解析】

过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.【详解】解:如图,过点P作PD⊥OB于D,

∵点P是∠AOB的角平分线上一点,PC⊥OA,∴PC=PD=1,即点P到OB的距离等于1.故选:A.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10、D【解析】

分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.【详解】解:根据题意得:当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);当点P在DA上运动时,此时S=8(4<t<6);当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);结合选项所给的函数图象,可得D选项符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.二、填空题(每小题3分,共24分)11、【解析】

了解反证法证明的方法和步骤,反证法的步骤中,首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设成立.【详解】反面是.因此用反证法证明“若|a|<2,那么时,应先假设.故答案为:【点睛】本题考查命题,解题关键在于根据反证法定义即可求得答案.12、.【解析】试题分析:原式=.考点:分式的化简.13、x≤1【解析】

根据图象的性质,当y≤0即图象在x轴下侧,x≤1.【详解】根据图象和数据可知,当y≤0即图象在x轴下侧,x≤1.故答案为x≤1【点睛】本题考查一次函数的图象,考查学生的分析能力和读图能力.14、且.【解析】

根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵代数式有意义,∴x≥0,x-1≠0,解得x≥0且x≠1.故答案为x≥0且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.15、(﹣4,3).【解析】

求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=,∴y=x+6,∴P(x,x+6),由题意:×6×(x+6)=1,∴x=﹣4,∴P(﹣4,3),故答案为(﹣4,3).【点睛】本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.16、或2【解析】

四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠BED=120°算出即可【详解】画出示意图,分别讨论A,E在同侧和异侧的情况,∵四边形ABCD为菱形,∠A=60,BD=3,∴△ABD为边长为3等边三角形,则AO=,∵∠BED=120°,则∠OBE=30°,可得OE=,则AE=,同理可得OE’=,则AE’=,所以AE的长度为或【点睛】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.17、AD⊥BC【解析】

根据等腰三角形“三线合一”,即可得到答案.【详解】∵在中,AB=AC,,.故答案为:.【点睛】本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”,是解题的关键.18、1【解析】

根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD.∵AE∥BD,∴四边形ABDE是平行四边形.∴AB=DE=CD,即D为CE中点.∵EF⊥BC,∴∠EFC=90°.∵AB∥CD,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共66分)19、证明见解析【解析】分析:根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明.详解:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形.点睛:本题考查了平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,熟记各性质与判定方法是解题的关键.20、,【解析】

首先进行化简,在代入计算即可.【详解】原式当时,原式【点睛】本题主要考查根式的化简,注意根式的分母不等为0,这是必考题,必须掌握.21、;证明见解析.【解析】

(1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;

(2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.【详解】,,,,,,,,四边形ABCD是平行四边形,,,,,;如图,延长AE交BC于H,四边形ABCD是平行四边形,,,,,,,在与中,,≌,,,,.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.22、答案见解析【解析】分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.详解:∵O是AC的中点,且EF⊥AC,

∴AF=CF,AE=CE,OA=OC,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AFO=∠CEO,

在△AOF和△COE中,

∴△AOF≌△COE(AAS),

∴AF=CE,

∴AF=CF=CE=AE,

∴四边形AECF是菱形;点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.23、(1)见解析;(2)【解析】

(1)首先通过角平分线的定义和平行四边形的性质,平行线的性质得出,则有,再利用一组邻边相等的平行四边形是菱形即可证明;(2)首先根据题意和菱形的性质证明四边形OCPD是矩形,然后利用矩形的性质和勾股定理即可得出答案.【详解】(1)∵AC平分∠BAD,.∵四边形ABCD是平行四边形,,,,,∴平行四边形ABCD是菱形;(2)∵平行四边形ABCD是菱形,∴,.∵DPAC,CPBD,∴四边形OCPD是平行四边形.,∴四边形OCPD是矩形,∴.【点睛】本题主要考查四边形,掌握矩形,菱形的判定及性质和勾股定理是解题的关键.24、(1)△BEC为直角三角形,理由见解析;(2)四边形EFPH是矩形,理由见解析;(3)【解析】

(1)根据矩形的性质可得∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5,然后利用勾股定理即可求出BE和CE,然后根据勾股定理的逆定理即可证出△BEC为直角三角形;(2)根据矩形的性质可得AD∥BC,AD=BC=5,然后根据平行四边形的判定定理可得四边形EBPD和四边形APCE均为平行四边形,从而证出四边形EFPH是平行四边形,然后根据矩形的定义即可得出结论;(3)先利用三角形面积的两种求法,即可求出BH,从而求出HE,然后根据勾股定理即可求出HP,然后根据矩形的面积公式计算即可.【详解】解:(1)△BEC为直角三角形,理由如下∵四边形ABCD为矩形∴∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5∵DE=1∴AE=AD-DE=4在Rt△ABE中,BE=在Rt△CDE中CE=∴BE2+CE2=25=BC2∴△BEC为直角三角形(2)四边形EFPH是矩形,理由如下∵四边形ABCD为矩形∴AD∥BC,AD=BC=5∵DE=BP=1,∴AD-DE=BC-BP=4即AE=CP=4∴四边形EBPD和四边形APCE均为平行四边形∴EB∥DP,AP∥EC∴四边形EFPH是平行四边形∵△BEC为直角三角形,∠BEC=90°∴四边形EFPH是矩形(3)∵四边形APCE为平行四边形,四边形EFPH是矩形∴AP=CE=,∠EHP=90°∴∠BHP=180°-∠EHP=90°∵S△ABP=∴解得:∴HE=BE-BH=在Rt△BHP中,HP=∴S矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论