lecureconsumionheoryII高级微观武大高研,叶建亮_第1页
lecureconsumionheoryII高级微观武大高研,叶建亮_第2页
lecureconsumionheoryII高级微观武大高研,叶建亮_第3页
lecureconsumionheoryII高级微观武大高研,叶建亮_第4页
lecureconsumionheoryII高级微观武大高研,叶建亮_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AdvancedMicroeconomics

lecture5:consumptiontheoryIIYeJianliangUtilitymaximizationContent:UtilityfunctionUtilitymaximizationExpenditureminimizationRelationshipbetweenUMPandEMPIntegrability1.FrompreferencestoutilityDefinition:isautilityfunctionofpreference,ifCanwealwaysfindautilityfunctionof?MaybeIfXisfinite,therealwaysexistutilityfunction.Proposition1:onlyrationalcanberepresentedbyautilityfunction.(N.CnotS.C)Lexicographicpreference:rationalbutnoutilityfunctionexist.1.FrompreferencestoutilityContinuity:then,orxuppercontoursetsandlowercontoursetsareclosure.Proposition2:Ifiscontinuous,thenexistacontinuousutilityfunctionrepresenting.1.FrompreferencestoutilityDesirability:preferenceisdesirableifismonotone:islocalnon-satiation:thereisa

proposition3:isstrongmonotone,thenit’smonotone;ismonotone,it’slocalnon-satiation.1.FrompreferencestoutilityConvexity:xuppercontoursetsareconvex.Decreasinginmarginalrateofsubstitution.peoplelikevariety.Preferencesareconvexmeansutilityfunctionisquasi-concave.Note:quasi-concavedoesnotcontainconcave.1.FrompreferencestoutilityIf,thenarehomothetic.Proposition4:Thearehomotheticifandonlyifit’sutilityfunctionisHD1.Ifthenarequasi-linearofcommodity1(it’scalledstandardcommodity)Proposition5:arequasi-linearifandonlyifit’sutilityfunctionisGormanform1.FrompreferencestoutilityPreferenceUtilityfunctionrationalityexistXfiniteDesirabilityincreasingContinuitycontinuityConvexityQuasi-concaveHomotheticHD1Quasi-linearGormanform2.UtilitymaximizationConsumer’sproblem(UMP):ThesolutionsarecalledWalras’DemandCorrespondence,orfunctionifit’ssinglepoint.2.UtilitymaximizationPropertiesofHD0SatisfiedWalras’LawIfareconcave,areconcavetoo,if arestrictlyconcave,issinglepoint.2.UtilitymaximizationIfthesolution,thenHereistheshadowprice:themarginalutilityofoptimalconsumption.Thevaluefunctioniscalled“indirectutilityfunction”:3.ExpenditureminimizationEMP:Thesolutionwascalled“Hicks(orcompensation)demandcorrespondence”.singlepoint----function.It’sHD0ofp.It’sconvex,asis.andsinglepointwhenarestrictlyconvex.3.ExpenditureminimizationThevaluefunction:“expenditurefunction”(moneymetricuntility)So,whenpricechanging,ifthewealthofconsumerchangecorrespondentlytokeepthesameutilitylevel,thenisthedemandchanging.HereHickswealthcompensationis

RecalltheSlutskywealthcompensation

4.RelationshipProposition5(Duality):

u(x)isacontinuousutilityfunctionof:

w>0,x*isthesolutionofUMP,whenit’srequiredthat,x*

isthesolutionofEMP,andvalueofEMPisw.Iftherequiredutility,x*isthesolutionofEMP,whentheexpenditureisp·x*,x*

isthesolutionofUMP,andvalueofUMPisu.4.RelationshipHicksdemandandexpenditurefunction:iss.n.s.d.HicksandWalrasdemand:Slutskyequation:Walrasdemandandindirectutilityfunction:Roy’sidentity:4.叼Re难la熄ti仆on乒sh伟ipUM揪PEM各Px(p,w)v(p,w)h(p,u)e(p,u)du芹al秧it腐ySl票ut项sk轻yeq乐ua纷ti服onRo悲y’碎sid交en淋ti欠ty5.驻In聋te牌gr背ab们il采it坟yDe哈ma御nd呜f辞un烧ct计io笔nx(p,w)(c申.d岛.)沸i嘱s暮HD陪0,哗s内at耽is隐fi毯edWa俊lr斧asLa见w喊an响d价ha搏ve牺a你s族ub婚st星it曾ut按io瘦n楼ma深tr括ixS(p,w)iss.巧n.系s.颜d.毙fo奔r龟an很y(p,w),ifit灭’s梳d缴ed押uc绝ed狸b刚y岛ra欢ti弓on燃al逃p序re散fe史re孩nc渐e.隆A碎nd乞i帽f绘we滨o哄bs胖er灶ve丽d砌anx(p,w)sa柏ti膜sf羞ie顾d况su槽ch双c滨on尘di袜ti舞on厘s,口c砖an刊w茎e芒fi仍nd呼a处p枣re照fe端re源nc嫁e艇to搜r少at听io学na哀li微za劲ti酱onx(p,w)?巴T宗ha雾t渔th细ein幅te适gr名ab激il使it战ypr粮ob笑le谈m.5.答In回te敞gr傍ab诵il奇it差yex雄pe迎nd党it旗ur誓e闻fu厉nc蹈ti城onpr昆ef起er附en绳ce坑.Pr秘op木os奋it阅io社n6余:滴di堤ff酷er严en宰ti缴ab真lee(p,u)is芬t就he情e惕xp需en少di粪tu彼re选f倦un谱ct沉io江n唇of冠s钓et间s:We层n傻ee壁d拌to宣p的ro遗vee(p,u)is王t陷he冰s阳up星po介rt桃f酱un危ct静io大n扣ofV(u),t茎ha诞t逼isse象e旁th级e酷fi钟g.5.型In萌te教gr梢ab勉il括it丸yDe仇ma默nd督ex搭pe劳nd喝it释ur持e僻fu佣nc断ti偿on块.Pa混rt元ia非l拨di熔ff帖er龟en俭ti访al凡e础qu自at固io蓝n:Th弹e佛ex踏is熊te佩nc算e酸of籍s治ol捞ut魔io午n忙me痛an遵s驼su热bs侦ti谅tu瞧ti肃on各m困at故ri启x枣is代s抚ym法me翅tr微ic筹:As音si输gn矩me驶ntex昏.7键.4将,选ex纷.8泄.7杰,e酿x.挣8.喇14qu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论