2023年北师大版八年级数学下册教案精选5篇_第1页
2023年北师大版八年级数学下册教案精选5篇_第2页
2023年北师大版八年级数学下册教案精选5篇_第3页
2023年北师大版八年级数学下册教案精选5篇_第4页
2023年北师大版八年级数学下册教案精选5篇_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年北师大版八年级数学下册教案精选5篇

2023年北师大版八班级数学下册教案(篇1)

学问结构:

重点与难点分析:

本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等供应了又一种方法,这是本节的重点.推论1、2供应证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系常常用到此推论.

本节内容的难点是性质与判定的区分。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.同学在应用它们的时候,常常混淆,关心同学熟悉判定与性质的区分,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让同学逐步把握解题的思路方法.由于学问点的增加,题目的简单程度也提高,肯定要同学真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

教法建议:

本节课教学方法主要是“以同学为主体的争论探究法”。在数学教学中要避开过多告知同学现成结论。提倡老师鼓舞同学争论解决问题的方法,引导他们探究数学的内在规律。详细说明如下:

(1)参加探究发觉,领会学问形成过程

同学学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名同学口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名同学代表发言.最终找一名同学用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让同学亲自动手实践,乐观参加发觉,满打满算了同学的熟悉冲突,使同学克服思维和探求的惰性,获得熬炼机会,对定理的产生过程,真正做到心领神会。

(2)采纳“类比”的学习方法,猎取学问。

由性质定理的学习,我们得到了几个推论,自然想到:依据等腰三角形的判定定理,我们能得到哪些特别的结论或者说哪些推论呢?这里先让同学发表看法,然后大家共同分析争论,把一些有价值的、甚至就是教材中的推论板书出来。假如同学提到的不完整,老师可以做适当的点拨引导。

(3)总结,形成学问结构

为了使同学对本节课有一个完整的熟悉,便于今后的应用,老师提出如下问题,让同学思索回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

一.教学目标:

1.使同学把握等腰三角形的判定定理及其推论;

2.把握等腰三角形判定定理的运用;

3.通过例题的学习,提高同学的规律思维力量及分析问题解决问题的力量;

4.通过自主学习的进展体验猎取数学学问的感受;

5.通过学问的纵横迁移感受数学的辩证特征.

二.教学重点:

等腰三角形的判定定理

三.教学难点:

性质与判定的区分

四.教学用具:

直尺,微机

五.教学方法:

以同学为主体的争论探究法

六.教学过程:

1、新课背景学问复习

(1)请同学们说出互逆命题和互逆定理的概念

估量同学能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发同学用自己的语言叙述上述结论,老师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:假如一个三角形有两个角相等,那么这两个角所对的边也相等.

(简称“等角对等边”).

由同学说出已知、求证,使同学进一步熟识文字转化为数学语言的方法.

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

老师可引导同学分析:

联想证有关线段相等的学问知道,先需构成以AB、AC为对应边的全等三角形.由于已知∠B=∠C,没有对应相等边,所以需添帮助线为两个三角形的公共边,因此帮助线应从A点引起.再让同学回想等腰三角形中常添的帮助线,同学可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

留意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,由于还未判定它是一个等腰三角形.

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

2.推论1:三个角都相等的三角形是等边三角形.

推论2:有一个角等于60°的等腰三角形是等边三角形.

要让同学自己推证这两条推论.

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:假如三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

分析:让同学画图,写出已知求证,启发同学遇到已知中有外角时,经常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,由于已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由同学板演即可.

补充例题:(投影展现)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解详细问题时要突出边角转换环节,要证CB=CD,需构造一个以CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在中,(已知)

(等边对等角)

(已知)

(等教对等边)

小结:求线段相等一般在三角形中求解,添加适当的帮助线构造三角形,找出边角关系.

2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

证明:DE//BC(已知)

BE=DE,同理DF=CF.

EF=DE-DF

EF=BE-CF

小结:

(1)等腰三角形判定定理及推论.

(2)等腰三角形和等边三角形的证法.

七.练习

教材P.75中1、2、3.

八.作业

教材P.83中1.1)、2)、3);2、3、4、5.

九.板书设计

2023年北师大版八班级数学下册教案(篇2)

一、学习目标

1.使同学了解运用公式法分解因式的意义;

2.使同学把握用平方差公式分解因式

二、重点难点

重点:把握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

假如一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家推断一下,其次个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:推断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

2023年北师大版八班级数学下册教案(篇3)

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探究多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)同学动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发觉吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应留意:

A、系数先相除,把所得的结果作为商的系数,运算过程中留意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只讨论整除的状况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要留意运算挨次,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的挨次进行;

E、多项式除以单项式法则。

2023年北师大版八班级数学下册教案(篇4)

【教学目标】

1.了解分式概念.

2.理解分式有意义的条件,分式的值为零的条件;能娴熟地求出分式有意义的条件,分式的值为零的条件.

【教学重难点】

重点:理解分式有意义的条件,分式的值为零的条件.

难点:能娴熟地求出分式有意义的条件,分式的值为零的条件.

【教学过程】

一、课堂导入

1.让同学填写[思索],同学自己依次填出:,,,.

2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发觉,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

[思索]引发同学思索分式的分母应满意什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.留意只有满意了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

二、例题讲解

例1:当x为何值时,分式有意义.

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.

(补充)例2:当m为何值时,分式的值为0?

(1);(2);(3).

【分析】分式的值为0时,必需同时满意两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

三、随堂练习

1.推断下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.当x取何值时,下列分式有意义?

3.当x为何值时,分式的值为0?

四、小结

谈谈你的收获.

五、布置作业

课本128~129页练习.

2023年北师大版八班级数学下册教案(篇5)

第11章平面直角坐标系

11。1平面上点的坐标

第1课时平面上点的坐标(一)

教学目标

【学问与技能】

1。知道有序实数对的概念,熟悉平面直角坐标系的相关学问,如平面直角坐标系的构成:横轴、纵轴、原点等。

2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。

3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】

1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】

通过引入有序实数对、平面直角坐标系让同学体会到现实生活中的问题的解决与数学的进展之间有联系,感受到数学的价值。

重点难点

【重点】

熟悉平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】

理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程

一、创设情境、导入新知

师:假如让你描述自己在班级中的位置,你会怎么说?

生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,猎取新知

师:在以上几个问题中,我们依据一个物体在两个相互垂直的方向上的数量来表示这个物体

的位置,这两个数量我们可以用一个实数对来表示,但是,假如(5,3)表示5排3号的话,那么(3,5)表示什么呢?

生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应当怎样表示一个物体的位置呢?

生:用一个有序的实数对来表示。

师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?

生:可以。

老师在黑板上作图:

我们可以在平面内画两条相互垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为

正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。

师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。

同学操作,老师巡察。老师指正同学易犯的错误。

老师边操作边讲解:

如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。

老师多媒体出示:

师:如图,请同学们写出A、B、C、D这四点的坐标。

生甲:A点的坐标是(—5,4)。

生乙:B点的坐标是(—3,—2)。

生丙:C点的坐标是(4,0)。

生丁:D点的坐标是(0,—6)。

师:很好!我们已经知道了怎样写出点的坐标,假如已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?

老师边操作边讲解:

在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满意横坐标为3,又满意纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。

同学动手作图,老师巡察指导。

三、深化探究,层层推动

师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开头,按逆时针方向,把这四个区域分别叫做第一象限、其次象限、第三象限和第四象限。留意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?

生:都一样。

师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?

生:能。其次象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。

师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能推断这点是在哪个象限吗?

生:能,在其次象限。

四、练习新知

师:现在我给出几个点,你们推断一下它们分别在哪个象限。

老师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A点在第三象限。

生乙:B点在第四象限。

生丙:C点不属于任何一个象限,它在y轴上。

生丁:D点不属于任何一个象限,它在x轴上。

师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。

同学作图,老师巡察,并予以指导。

五、课堂小结

师:本节课你学到了哪些新的学问?

生:熟悉了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。

老师补充完善。

教学反思

物体位置的说法和表述物体的位置等问题,同学在实际生活中常常遇到,但可能没有想到这些问题与数学的联系。老师在这节课上引导同学去想到建立一个平面直角坐标系来表示物体的位置,让同学参加到探究猎取新知的活动中,主动学习思索,感受数学的魅力。在教学中我让同学由生活中的实例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论