




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将0.000008这个数用科学记数法表示为(
)A.8×10-6 B.8×10-5 C.0.8×10-5 D.8×10-72.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.53.七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数 B.中位数 C.极差 D.众数4.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.15.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生 D.最喜欢田径的人数占总人数的10%6.如图,直线l所表示的变量x,y之间的函数关系式为A. B. C. D.7.下列实数中,无理数是()A. B. C. D.8.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A. B. C. D.10.在直角坐标系中,点关于原点对称的点的坐标是(
)A. B. C. D.二、填空题(每小题3分,共24分)11.矩形中,对角线交于点,,则的长是__________.12.若是正比例函数,则的值为______.13.在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么的取值范围是__________.14.在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.15.要使分式的值为0,则x的值为____________.16.因式分解:x2﹣x=______.17.关于的x方程=1的解是正数,则m的取值范围是_____.18.若,则=_______________.三、解答题(共66分)19.(10分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组成员意外的发现图①中(三角板一边与CC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;(2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.(3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.20.(6分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.(1)求证:四边形CDEF是平行四边形;(2)填空:①当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是矩形;②当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是菱形.21.(6分)如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.22.(8分)如图,平面直角坐标系中,已知点,若对于平面内一点C,当是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.请判断点,点是否是线段AB的“等长点”,并说明理由;若点是线段AB的“等长点”,且,求m和n的值.23.(8分)如图,在□ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.(8分)计算:(1);(2).25.(10分)(1)计算:(2)已知:如图,、分别为平行四边形的边、上的点,,求证:26.(10分)如图,矩形中,,画出面积不相等的2个菱形,使菱形的顶点都在矩形的边上.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.000008用科学计数法表示为8×10-6,故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.3、B【解析】
根据平均数、中位数、极差及众数的意义分别判断后即可确定正确的选项.【详解】去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数,一定不会影响到中位数,故选B.【点睛】此题考查统计量的选择,解题关键在于掌握各性质定义.4、C【解析】
∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.5、C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A.最喜欢足球的人数最多,故A选项错误;B.最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C.全班共有12+20+8+4+6=50名学生,故C选项正确;D.最喜欢田径的人数占总人数的=8%,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.6、B【解析】
根据图象是直线可设一次函数关系式:,根据一次函数图象上已知两点代入函数关系式可得:,解得:,继而可求一次函数关系式.【详解】根据图象设一次函数关系式:,由图象经过(0,0)和(1,2)可得:,解得:,所以一次函数关系为:,故选B.【点睛】本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法.7、D【解析】
根据无理数、有理数的定义即可判定选择项.【详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.【点睛】此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8、B【解析】试题分析:先把与组成方程组求得交点坐标,即可作出判断.由解得所以函数的图象与函数的图象的交点在第二象限故选B.考点:点的坐标点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、B【解析】
先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.【详解】解:∵,∴∠BED=∠BEC在Rt△BDE与Rt△BCE中∴Rt△BDE≌Rt△BCE(HL)∴DE=CE∴点E是CD的中点,又∵点F是AC的中点,∴EF是△ADC的中位线,∴∵,,,∴AD=AB-BC=4∴EF=2故答案为:B.【点睛】本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.10、D【解析】
根据关于原点对称,横纵坐标都互为相反数,进行计算即可.【详解】解:(2,1)关于原点的对称点坐标为(﹣2,﹣1),故选:D.【点睛】本题考查关于原点对称,掌握关于原点对称,横纵坐标都互为相反数是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。【详解】解:如图,在矩形ABCD中,OA=OC,∵∠AOB=60°,∠ABC=90°∴∠BAC=30°∴AC=2BC设BC=x,则AC=2x∴解得x=,则AC=2x=2∴AO==.【点睛】本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。12、2【解析】
根据正比例函数的定义即可求解.【详解】依题意得a-1=1,解得a=2【点睛】此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.13、3<x<1【解析】
根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.【详解】∵ABCD是平行四边形,AC=14,BD=8,∴OA=AC=7,OB=BD=4,∴7−4<x<7+4,即3<x<1.故答案为:3<x<1.【点睛】此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.14、8.5【解析】
根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.【详解】根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.【点睛】本题考查求中位数,解题的关键是掌握求中位数的方法.15、-2.【解析】
分式的值为零的条件是分子等于0且分母不等于0,【详解】因为分式的值为0,所以x+2=0且x-1≠0,则x=-2,故答案为-2.16、x(x﹣1)【解析】分析:提取公因式x即可.详解:x2−x=x(x−1).故答案为:x(x−1).点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.17、m>﹣5且m≠0【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.【详解】去分母,得m=x-5,即x=m+5,∵方程的解是正数,∴m+5>0,即m>-5,又因为x-5≠0,∴m≠0,则m的取值范围是m>﹣5且m≠0,故答案为:m>﹣5且m≠0.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.18、36【解析】【分析】根据积的乘方的运算法则即可得.【详解】因为,所以=·=4×9=36,故答案为36.【点睛】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.三、解答题(共66分)19、(1)见解析;(1)BN1=NC1+CD1;(3)CM1+CN1=DM1+BN1,理由见解析.【解析】
(1)连结AN,由矩形知AO=CO,∠ABN=90°,AB=CD,结合ON⊥AC得NA=NC,由∠ABN=90°知NA1=BN1+AB1,从而得证;(1)连接DN,在Rt△CDN中,根据勾股定理可得:ND1=NC1+CD1,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN1=NC1+CD1;(3)延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN1+CM1=DM1+BN1.【详解】(1)证明:连结AN,∵矩形ABCD∴AO=CO,∠ABN=90°,AB=CD,∵ON⊥AC,∴NA=NC,∵∠ABN=90°,∴NA1=BN1+AB1,∴NC1=BN1+CD1.(1)如图1,连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND1=NC1+CD1,∴BN1=NC1+CD1.(3)CM1+CN1=DM1+BN1理由如下:延长MO交AB于E,∵矩形ABCD,∴BO=DO,∠ABC=∠DCB=90°,AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO(ASA),∴OE=OM,BE=DM,∵MO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE1=BE1+BN1,NM1=CN1+CM1,∴CN1+CM1=BE1+BN1
,即CN1+CM1=DM1+BN1
.【点睛】此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定与性质等知识点.20、(1)详见解析;(2)①AD=BC;②AD⊥BC.【解析】
(1)利用两组对边分别平行的四边形是平行四边形,可得四边形AECD和四边形BFDC都是平行四边形,再由一组对边平行且相等的四边形是平行四边形可得CDEF是平行四边形.(2)①当AD=BC时,四边形EFCD是矩形.理由是:对角线相等的平行四边形是矩形;②当AD⊥BC时,四边形EFCD是菱形.理由是:对角线互相垂直的平行四边形是菱形.【详解】解:(1)证明:∵AB∥CD,CE∥AD,DF∥BC,∴四边形AECD和四边形BFDC都是平行四边形,∴AE=CD=FB,∵AB=3CD,∴EF=CD,∴四边形CDEF是平行四边形.(2)解:①当AD=BC时,四边形EFCD是矩形.理由:∵四边形AECD和四边形BFDC都是平行四边形,∴EC=AD,DF=BC,∴EC=DF,∵四边形EFDC是平行四边形,∴四边形EFDC是矩形.②当AD⊥BC时,四边形EFCD是菱形.理由:∵AD∥CE,DF∥CB,AD⊥BC,∴DF⊥EC,∵四边形EFCD是平行四边形,∴四边形EFCD是菱形.故答案为AD=BC,AD⊥BC.【点睛】本题考查了平行四边形的性质和判定,矩形的判定及菱形的判定.熟练掌握相关定理是解题关键.21、(1)证明见解析;(2)当AC=AB时,四边形DEFG为正方形,证明见解析【解析】
(1)利用三角形中位线定理推知ED∥FG,ED=FG,则由“对边平行且相等的四边形是平行四边形”证得四边形DEFG是平行四边形,同理得EF=HA=BC=DE,可得结论;(2)AC=AB时,四边形DEFG为正方形,通过证明△DCB≌△EBC(SAS),得HC=HB,证明对角线DF=EG,可得结论.【详解】(1)证明:∵D、E分别为AC、AB的中点,∴ED∥BC,ED=BC.同理FG∥BC,FG=BC,∴ED∥FG,ED=FG,∴四边形DEFG是平行四边形,∵AE=BE,FH=BF,∴EF=HA,∵BC=HA,∴EF=BC=DE,∴▱DEFG是菱形;(2)解:猜想:AC=AB时,四边形DEFG为正方形,理由是:∵AB=AC,∴∠ACB=∠ABC,∵BD、CE分别为AC、AB边上的中线,∴CD=AC,BE=AB,∴CD=BE,在△DCB和△EBC中,∵∴△DCB≌△EBC(SAS),∴∠DBC=∠ECB,∴HC=HB,∵点G、F分别为HC、HB的中点,∴HG=HC,HF=HB,∴GH=HF,由(1)知:四边形DEFG是菱形,∴DF=2FH,EG=2GH,∴DF=EG,∴四边形DEFG为正方形.故答案为(1)证明过程见解析;(2)当AC=AB时,四边形DEFG为正方形.【点睛】本题考查了平行四边形、矩形的判定、菱形的判定、正方形的判定、三角形的中位线性质定理,三角形中线的性质及等腰三角形的性质,其中三角形的中位线的性质定理为证明线段相等和平行提供了依据.22、是线段AB的“等长点”,不是线段AB的“等长点”,理由见解析;,或,.【解析】
先求出AB的长与B点坐标,再根据线段AB的“等长点”的定义判断即可;分两种情况讨论,利用对称性和垂直的性质即可求出m,n.【详解】点,,,,,.点,,,是线段AB的“等长点”,点,,,,,不是线段AB的“等长点”;如图,在中,,,,.分两种情况:当点D在y轴左侧时,,,点是线段AB的“等长点”,,,,;当点D在y轴右侧时,,,,点是线段AB的“等长点”,,.综上所述,,或,.【点睛】本题考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,坐标与图形性质解的关键是理解新定义,解的关键是画出图形,是一道中等难度的中考常考题.23、(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.【解析】
(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖补充协议书参考二零二五年
- 2025年四方合作协议合同范本
- 2025年一氧化二氮项目合作计划书
- 代办检测合同样本
- 人教版《中学美术八年级上册》教案说课稿
- 剪剪撕撕画画贴贴教学设及反思
- 公司分账合同样本
- led屏保修合同标准文本
- 工程挂靠承诺书正式版
- 一年级下册数学教案-7.4-解决实际问题复习丨苏教版
- 幼儿园绘本故事:《十二生肖》 课件
- (完整版)人教版小学3-6年级英语单词表-可直接打印
- 机电安装总进度计划横道图
- 起重吊装作业安全综合验收记录表
- 常规检泵设计培训
- 园林绿化工程监理实施细则(完整版)
- 梦想(英语演讲稿)PPT幻灯片课件(PPT 12页)
- 中国联通员工绩效管理实施计划方案
- 法院刑事审判庭速裁庭廉政风险防控责任清单
- IEC60335-1(中文)
- 土方填筑碾压试验报告
评论
0/150
提交评论