版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省南京市木渎中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,那么等于()A.2B.3C.=(1,2)D.5
参考答案:B略2.下列命题中,正确的有()个.①符合的集合P有3个;②对应既是映射,也是函数;③对任意实数都成立;④.(A)0
(B)1
(C)2
(D)3参考答案:B3.函数f(x)=的定义域是(
)A.[﹣,1] B.(﹣,1) C.(,1) D.[﹣1,﹣]参考答案:B【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】求函数f(x)的定义域,即求使f(x)有意义的x的取值范围.【解答】解:欲使f(x)有意义,则有,解得﹣<x<1.∴f(x)的定义域是(﹣,1).故选B.【点评】本题属基础题,考查了函数的定义域及其求法,解析法给出的函数要使解析式有意义,具有实际背景的函数要考虑实际意义.4.甲、乙两人做“石头、剪刀、布”游戏,两人平局的概率为
A.
B.
C.
D.参考答案:C略5.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定参考答案:B【考点】二次函数的性质.【分析】利用对称轴的公式求出对称轴,根据二次函数的单调区间得到,得到选项.【解答】解:∵函数y=ax2+bx+3的对称轴为∵函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数∴∴b=2a<0故选B6.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x﹣y=0上,则等于()A.﹣ B. C.0 D.参考答案:B【考点】运用诱导公式化简求值.【分析】利用三角函数的定义,求出tanθ,利用诱导公式化简代数式,代入即可得出结论.【解答】解:∵角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x﹣y=0上,∴tanθ=3,∴===,故选:B.【点评】本题考查三角函数的定义,考查诱导公式的运用,正确运用三角函数的定义、诱导公式是关键.7.若执行如下图所示的程序框图,输入=1,=2,=3,=2则输出的数为(
)A.
B.
C.
D.参考答案:C8.列函数中不能用二分法求零点的是(
)A.
B.
C.
D.参考答案:C略9.已知,,则(
)A.1 B.2 C. D.3参考答案:A【分析】根据向量坐标运算法则直接求解.【详解】因为,,所以,所以,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.10.
(
)
A.>0
B.<3
C.>-3
D.
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.判断下列各组中的两个函数是同一函数的为(
)
(1),;(2),;
(3),;(4),;(5),。A.(1),(2)
B.(2),(3)
C.(4)
D.(3),(5)参考答案:C12.函数f(x)=+的定义域为(用集合或区间表示).参考答案:[﹣1,1)∪(1,2)∪(2,+∞)【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,0指数幂的底数不为0,分式的分母不为0联立不等式组求解.【解答】解:由,解得﹣1≤x<1或1<x<2或x>2.∴函数f(x)=+的定义域为[﹣1,1)∪(1,2)∪(2,+∞).故答案为:[﹣1,1)∪(1,2)∪(2,+∞).13.下图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图甲中从左向右第一组的频数为4000.在样本中记月收入在,,的人数依次为、、……、.图乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,则样本的容量
;图乙输出的
.(用数字作答)参考答案:
,6000.14.已知集合,,若,则的取值范围是___________。参考答案:15.求888和1147的最大公约数________.最小公倍数_______参考答案:最大公约数37.最小公倍数27528.16.已知集合A={x|ax+1=0},B={﹣1,1},若A∩B=A,则实数a的所有可能取值的集合为
.参考答案:{﹣1,0,1}【考点】集合的包含关系判断及应用.【分析】根据题中条件:“A∩B=A”,得到B是A的子集,故集合B可能是?或B={﹣1},或{1},由此得出方程ax+1=0无解或只有一个解x=1或x=﹣1.从而得出a的值即可【解答】解:由于A∩B=A,∴B=?或B={﹣1},或{1},∴a=0或a=1或a=﹣1,∴实数a的所有可能取值的集合为{﹣1,0,1}故答案为:{﹣1,0,1}17.已知,则=
.参考答案:-1
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.集合,,且,求实数的值.参考答案:略19.已知α和β均为锐角,且sinα=,cosβ=.(1)求sin(α+β)的值;(2)求tan(α﹣β)的值.参考答案:【考点】GR:两角和与差的正切函数;GQ:两角和与差的正弦函数.【分析】(1)由条件利用同角三角函数的基本关系求得cosα和sinβ的值,两角的正弦公式求得sin(α+β)的值.(2)由(1)求得tanα和tanβ的值,再利用两角差的正切公式求得tan(α﹣β)的值.【解答】解:(1)∵已知α和β均为锐角,且sinα=,cosβ=,∴cosα==,sinβ==,∴sin(α+β)=sinαcosβ+cosαsinβ=+=.(2)由(1)可得tanα==,tanβ==,∴tan(α﹣β)===.20.(本小题满分12分)求与轴相切,圆心在直线上,且被直线截得的弦长为的圆的方程。参考答案:设所求的方程为则圆心到直线的距离为,即
(1)----4分由于所求圆和轴相切,
(2)----2分又圆心在直线上,
(3)----2分联立(1)(2)(3)解得或----10分故所求圆的方程是或
------12分
21.【本题满分16分】
有n个首项都是1的等差数列,设第m个数列的第k项为a(m,k)(其中m,k=1,2,3,···,n,n≥3),公差为dm,并且a(1,n),a(2,n),a(3,n),···,a(n,n)成等差数列.
(1)证明:dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值;
(2)当d1=1,d2=3时,将数列{dm}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为(cm)4(cm>0),求数列{2cm·dm}的前n项和Sn;
(3)对于(2)中的dn、Sn,设N是不超过20的正整数,当n>N时,求使得不等式(Sn-6)>dn成立的所有N的值.16.
参考答案:解:(1)由题意知a(m,n)=1+(n-1)dm.
∴a(2,n)-a(1,n)=[1+(n-1)d2]-[1+(n-1)d1]=(n-1)(d2-d1),
同理,a(3,n)-a(2,n)=(n-1)(d3-d2),
a(4,n)-a(3,n)=(n-1)(d4-d3),…,
a(n,n)-a(n-1,n)=(n-1)(dn-dn-1).
又∵a(1,n),a(2,n),a(3,n),···,a(n,n)成等差数列,
∴a(2,n)-a(1,n)=a(3,n)-a(2,n)=···=a(n,n)-a(n-1,n)
故d2-d1=d3-d2=···=dn-dn-1,即{dn}是公差为d2-d1的等差数列.
∴dm=d1+(m-1)(d2-d1)=(2-m)d1+(m-1)d2
令p1=2-m,p2=m-1,则dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式)
此时p1+p2=1. ························4¢
(2)当d1=1,d2=3时,dm=2m-1
数列{dm}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…
按分组规律,第m组中有2m-1个奇数,
∴第1组到第m组共有1+3+5+···+(2m-1)=m2个奇数.
∵前k个奇数的和为1+3+5+···+(2k-1)=k2,∴前m2个奇数的和为m4.
∴(cm)4=m4,∵cm>0∴cm=m,∴2cm·dm=(2m-1)·2m ························6¢
∴Sn=1·2+3·22+5·23+···+(2n-3)·2n?1+(2n-1)·2n.
2Sn=
1·22+3·23+···+(2n-5)·2n?1+(2n-3)·2n+(2n-1)·2n+1.
相减得:-Sn=2+2·22+2·23+···+2·2n?1+2·2n-(2n-1)·2n+1.
=2×(2+22+23+···+2n)-2-(2n-1)·2n+1.
=2×2(2n-1)-2-(2n-1)·2n+1=(3-2n)·2n+1-6
∴Sn=(2n-3)·2n+1+6; ························10¢
(3)由(2)得dn=2n-1,Sn=(2n-3)·2n+1+6.
故不等式(Sn-6)>dn等价于(2n-3)·2n+1>50(2n-1).
即f(n)=(2n-3)·2n+1-50(2n-1)=(2n-3)·(2n+1-50)-100.
当n=1,2,3,4,5时,都有f(n)<0,即(2n-3)·2n+1<50(2n-1)
而f(6)=9×(27-50)-100=9×(128-50)-100=602>0
∵当n≥6时,f(n)单调递增,故有f(n)>0.
∴当n≥6时,(2n-3)·2n+1>50(2n-1)成立,即(Sn-6)>dn成立.
∴满足条件的所有正整数N=5,6,7,···,20. ························16¢22.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024农产品订购合同
- 2024年广西古建施工承揽合同模板
- 2024年人力资源服务保密协议
- 2024年度城市轨道交通安全监控系统合同
- 2024年建筑内架搭建专业承包合同
- 2024年度产品研发与技术服务合同
- 2024不能强迫续订劳动合同
- 2024年度赠与合同
- 2024年废旧物品回收处理协议
- 2024商铺租赁合同适用于各类商业街、购物中心店铺
- 文明礼仪主题班会课件(共23张)
- 航站楼管理部《机场使用手册》实施细则
- 脑卒中基本知识课件
- 高效沟通与管理技能提升课件
- 消防维保方案 (详细完整版)
- 四年级上册英语课件- M3U1 In the school (Period 3 ) 上海牛津版试用版(共15张PPT)
- 档案馆建设标准
- 高边坡支护专家论证方案(附有大量的图件)
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 人员定位矿用井口唯一性检测系统
- 电力系统数据标记语言E语言格式规范CIME
评论
0/150
提交评论