版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省江门市百合中学高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.由曲线与直线围成的封闭图形的面积A.24
B.36
C.42
D.48
参考答案:B2.右图是某程序的流程图,则其输出结果为A. B.C. D.参考答案:C略3.设全集U=R,,,则A.
B.
C.
D.参考答案:D略4.某综艺节目为比较甲、乙两名选手的各项能力(指标值满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,图中点A表示甲的创造力指标值为4,点B表示乙的空间能力指标值为3,则下面叙述正确的是(
)A.乙的记忆能力优于甲的记忆能力B.乙的创造力优于观察能力C.甲的六大能力整体水平优于乙D.甲的六大能力中记忆能力最差参考答案:C由图示易知甲的记忆能力指标值为,乙的记忆能力指标值为4,所以甲的记忆能力优于乙,故排除;同理,乙的观察能力优于创造力,故排除;甲的六大能力中推理能力最差,故排除;又甲的六大能力指标值的平均值为,乙的六大能力指标值的平均值为,所以甲的六大能力整体水平优于乙,故选.5.在平面直角坐标系xoy中,以x的非负半轴为始边作两个锐角,它们的终边分别与单位圆交于点A,B,已知A的横坐标为,B的纵坐标为,则(
)(A) (B) (C)
(D)参考答案:D考点:三角函数的基本关系式;二倍角公式;两角和的正弦公式.【易错点睛】本题主要考查了三角函数的定义;三角函数的基本关系式;二倍角公式;两角和的正弦公式.利用三角函数的定义,求一个角的三角函数值,需确定三个量:(1)角的终边上任意一个异于原点的点的横坐标;(2)纵坐标;(3)该点到原点的距离.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).6.已知函数,若,则的取值范围是(
)(A)
(B)
(C)
(D)参考答案:D略7.已知集合,若,则为(
)A.
B.
C.
D.参考答案:D略8.关于函数f(x)=,有下列四个命题:①其最小正周期为π;②其图象由y=2sin3x向左平移个单位而得到;③其表达式可写成f(x)=④在x∈上为单调递增函数.则其中真命题为
A.①③④
B.②③④
C.①②④
D.①②③参考答案:A9.设实数满足
,则的最小值是
参考答案:A10.已知点P为双曲线=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左右焦点,且|F1F2|=,I为三角形PF1F2的内心,若S=S+λS△成立,则λ的值为()A. B. C. D.参考答案:D【考点】双曲线的简单性质.【分析】设△PF1F2的内切圆半径为r,由|PF1|﹣|PF2|=2a,|F1F2|=2c,用△PF1F2的边长和r表示出等式中的三角形的面积,解此等式求出λ.【解答】解:设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|﹣|PF2|=2a,|F1F2|=2c,S△IPF1=|PF1|?r,S△IPF2=|PF2|?r,S△IF1F2=?2c?r=cr,由题意得:|PF1|?r=|PF2|?r+λcr,故λ==,∵|F1F2|=,∴=∴∴=故选D.二、填空题:本大题共7小题,每小题4分,共28分11.设集合A=,函数,若,且,则的取值范围是_________.参考答案:12.若直线与曲线恰有四个公共点,则的取值集合是____参考答案:13.正三角形中是上的点,,则_________.参考答案:1414.给出下列命题:①已知函数在点处连续,则;②若不等式对于一切非零实数均成立,则实数的取值范围是
③不等式的解集是④如果的三个内角的余弦值分别等于的三个内角的正弦值,则为锐角三角形,为钝角三角形.其中真命题的序号是(将所有真命题的序号都填上)参考答案:124
略15.若,则圆恒过定点
.参考答案:(0,1)(-2,1)16.命题“若都是偶数,则是偶数”的否命题是_________
参考答案:答案:若不都是偶数,则不是偶数17.已知集合A={0,1,2},则A的子集的个数为
.参考答案:8【考点】子集与真子集.【分析】由集合A中的元素有3个,把n=3代入集合的子集的公式2n中,即可计算出集合A子集的个数.【解答】解:由集合A中的元素有0,1,2共3个,代入公式得:23=8,则集合A的子集有:{0,1,2},{0},{1},{2},{0,1},{1,2},{0,2},?共8个.故答案为:8.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.参考答案:(Ⅰ);(Ⅱ).【分析】(Ⅰ)从8人中随机抽取4人负责文明宣传的基本事件的总数为,事件M包含基本事件的个数为,利用古典概型的计算公式,即可求解.(Ⅱ)由题意,得到随机变量X可取的值,求得相应的概率,得出相应的分布列,利用期望的公式,即可求解.【详解】(Ⅰ)从8人中随机抽取4人负责文明宣传的基本事件的总数为,事件M包含基本事件的个数为,则.(Ⅱ)由题意知X可取的值为:0,1,2,3.则,,因此X的分布列为X0123P
的数学期望是.【点睛】本题主要考查了古典概型及其概率的计算,以及随机变量的分布列及期望的求解,其中解答中认真审题,得出随机变量的取值,求得相应的概率得到分布列是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
19.已知三点A(1,﹣1),B(3,0),C(2,1),P为平面ABC上的一点,=λ+μ,且?=0,?=3.(1)求?;(2)求λ+μ的值.参考答案:【分析】(1)求出的坐标,代入向量的坐标运算公式计算数量积;(2)用λ,μ表示出的坐标,根据向量的数量积公式列方程组求出λ+μ.【解答】解:(1)=(2,1),=(1,2),∴=2×1+1×2=4.(2)=λ+μ=(2λ+μ,λ+2μ),∵,∴,即,两式相加得:9λ+9μ=3,∴λ+μ=.20.如图所示,△ABC和△BCD所在平面互相垂直,且,,E,F分别为AC,DC的中点.(1)求证:;(2)求二面角的正弦值.参考答案:(1)见解析(2)试题分析:(1)(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可证明EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.易得,所以,因此,从而得;(2)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF,因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即可求出二面角E-BF-C的正弦值.(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.(1)证明:(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,又EF面EFO,所以EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,从而,所以.(2)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF.因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即二面角E-BF-C的正弦值为.(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即二面角E-BF-C的正弦值为.考点:1.线面垂直的判定;2.二面角.21.函数的部分图象如图所示.(1)写出的最小正周期及图中、的值;(2)求在区间上的最大值和最小值.参考答案:22.已知圆O:x2+y2=4和圆C:x2+(y﹣4)2=1.(Ⅰ)判断圆O和圆C的位置关系;(Ⅱ)过圆C的圆心C作圆O的切线l,求切线l的方程;(Ⅲ)过圆C的圆心C作动直线m交圆O于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.参考答案:【考点】圆与圆的位置关系及其判定;直线与圆锥曲线的综合问题.【专题】直线与圆.【分析】(Ⅰ)求出两圆的半径和圆心距,由此能判断两圆的位置关系.(Ⅱ)设切线l的方程为:y=kx+4,由圆心O到直线l的距离等于半径,能求出切线l的方程.(Ⅲ)当直线m的斜率不存在时,直线m经过圆O的圆心O,由此得到圆O是满足题意的圆;当直线m的斜率存在时,设直线m:y=kx+4,由,消去y整理,得(1+k2)x2+8kx+12=0,由此求出存在以AB为直径的圆P满足题意.从而能求出在以AB为直径的所有圆中,存在圆P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圆P经过点M(2,0).【解答】解:(Ⅰ)因为圆O的圆心O(0,0),半径r1=2,圆C的圆心C(0,4),半径r2=1,所以圆O和圆C的圆心距|OC|=|4﹣0|>r1+r2=3,所以圆O与圆C相离.…(Ⅱ)设切线l的方程为:y=kx+4,即kx﹣y+4=0,所以O到l的距离,解得.所以切线l的方程为或…(Ⅲ)ⅰ)当直线m的斜率不存在时,直线m经过圆O的圆心O,此时直线m与圆O的交点为A(0,2),B(0,﹣2),AB即为圆O的直径,而点M(2,0)在圆O上,即圆O也是满足题意的圆…ⅱ)当直线m的斜率存在时,设直线m:y=kx+4,由,消去y整理,得(1+k2)x2+8kx+12=0,由△=64k2﹣48(1+k2)>0,得或.设A(x1,y1),B(x2,y2),则有…①…由①得,…②,…③若存在以AB为直径的圆P经过点M(2,0),则MA⊥MB,所以,因此(x1﹣2)(x2﹣2)+y1y2=0,即x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作冰淇淋课件
- 第七讲 调用五官感受写一写(看图写话教学)-一年级语文上册(统编版·2024秋)
- 2024年黑龙江省龙东地区中考数学真题卷及答案解析
- 幼儿园小班音乐《狐狸和石头》教案
- 西京学院《影像信息学与使用》2021-2022学年第一学期期末试卷
- 西京学院《继电保护装置》2022-2023学年期末试卷
- 西京学院《儿科护理学》2023-2024学年第一学期期末试卷
- 西华师范大学《中国画基础》2022-2023学年第一学期期末试卷
- 西华师范大学《新闻修辞学》2021-2022学年第一学期期末试卷
- 西华师范大学《体育课程与教学论》2022-2023学年第一学期期末试卷
- 3.4问题解决策略:归纳-2024-2025年北师大版《数学》七年级上册
- 2024年全国社会保障基金理事会招聘18人历年(高频重点复习提升训练)共500题附带答案详解
- DL∕T 5210.4-2018 电力建设施工质量验收规程 第4部分:热工仪表及控制装置
- 《建筑外墙外保温系统修缮标准 JGJ376-2015》
- 水利水电工程单元工程施工质量验收评定表及填表说明
- 2024年全国初中数学竞赛试题含答案
- 残疾儿童送教上门教案
- 医疗器械(耗材)项目投标服务投标方案(技术方案)
- (完整版)链传动习题
- 2024年江苏省港口集团招聘笔试参考题库含答案解析
- 出国留学高中成绩单最强模板
评论
0/150
提交评论