概率的基本公式_第1页
概率的基本公式_第2页
概率的基本公式_第3页
概率的基本公式_第4页
概率的基本公式_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于概率的基本公式第1页,课件共35页,创作于2023年2月

一、案例案例1[掷骰子]掷一枚骰子,求出现不大于2点或不小于4点的概率.解设ei表示“出现点”(i=1,2,3,4,5,6),A表示“出现不大于2点”,B表示“出现不小于4点”,C表示“出现不大于2点或不小于4点”.则第2页,课件共35页,创作于2023年2月所以事实上第3页,课件共35页,创作于2023年2月案例2[取球]在一个盒中装有6个规格完全相同的红、绿、黄三种球,其中红球3个,绿球2个,黄球1个,现从中任取一球,求取到红球或绿球的概率.解设A表示“取到红球”,B表示“取到绿球”,C表示“取到红球或绿球”,则第4页,课件共35页,创作于2023年2月所以事实上第5页,课件共35页,创作于2023年2月

二、概念和公式的引出互斥事件在同一次随机试验中,若事件A与B不可能同时如果一组事件中,任意两个事件都互斥,称为发生,则称事件为互斥事件,即两两互斥.第6页,课件共35页,创作于2023年2月互斥事件概率的加法公式特别地,当A与B为对立事件时,如果A、B为两个互斥事件,则的概率等于这两个事件概率之和.即设事件组A1,A2,…,An两两互斥,则第7页,课件共35页,创作于2023年2月一批产品共有50个,其中45个是合格品,5个是次品,从这批产品中任取3个,求其中有次品的概率.

三、进一步练习练习[次品率]解设Ai表示“取出的3个产品中恰有i个次品”(i=1,2,3)A表示“取出的3个产品中有次品”.显然两两互斥且,而第8页,课件共35页,创作于2023年2月所以“取出的3个产品全是合格品”这一事件的对立事件为A=“取出的3个产品中有次品”.由对立事件的概率加法公式,有第9页,课件共35页,创作于2023年2月7.2.2任意事件概率的加法公式

一、案例

二、概念和公式的引出三、进一步的练习第10页,课件共35页,创作于2023年2月

案例

[比赛]某大学中文系一年级一班有50名同学,在参加学校举行的一次篮球和乒乓球比赛中,有30人报名参加篮球比赛,有15人报名参加乒乓球比赛,有10人报名既参加篮球又参加乒乓球比赛,现从该班任选一名同学,问该同学参加篮球或乒乓球比赛的概率.第11页,课件共35页,创作于2023年2月解我们通过如下集合图来进行分析.设A表示参加篮球比赛的同学,B表示参加乒乓球比赛表示参加篮球或乒乓球比赛的同学,则由古典概率公式,有的同学,则A有30人,B有15人,AB有10人,用第12页,课件共35页,创作于2023年2月

二、概念和公式的引出任意事件概率的加法公式如果A与B为任意两个事件,则第13页,课件共35页,创作于2023年2月在如图所示的电路中,电器元件a,b发生故障的概率分别为0.05,0.06,a与b同时发生故障的概率为0.003,求此电路断路的概率.

三、进一步练习练习[电路分析]第14页,课件共35页,创作于2023年2月解设A表示“元件a发生故障”,B表示“元件b发生由概率的加法公式得故障”,C表示“电路断路”,则第15页,课件共35页,创作于2023年2月7.2.3条件概率

一、案例二、概念和公式的引出三、进一步练习第16页,课件共35页,创作于2023年2月

一、案例

[抛硬币]

(一)独立事件抛一枚硬币两次,第一次是否出现正面与第二次是否出现正面互不影响.换言之,“第一次出现正面”这一事件的发生不影响“第二次出现正面”这一事件的发生的可能性大小.第17页,课件共35页,创作于2023年2月如果事件A的发生不影响事件B发生的概率,事件B的发生也不影响事件A发生的概率,那么称事件A与B相互独立.

二、概念和公式的引出独立事件若A与B相互独立,则A与也相互独立.第18页,课件共35页,创作于2023年2月掷一枚骰子两次,设A表示“第一次掷出2点”,B表示“第二次掷出2点”,显然A与B相互独立.

三、进一步练习练习[掷骰子]第19页,课件共35页,创作于2023年2月

一、案例[抽签]

(二)条件概率某单位在一次分房过程中,按职工工龄、职称、学历进行积分排序选房,但选到最后一套住房时,甲乙两人处于同一选房积分.于是决定由2人抽签,确定选房资格.解设A表示“甲抽中”,B表示“乙抽中”,则A发生必然影响B发生的概率,同样B发生必然影响A发生的概率.第20页,课件共35页,创作于2023年2月如果已知事件A发生了,那么在事件A发生的条件下,

二、概念和公式的引出条件概率同样在事件B发生的条件下,A发生的概率也称为条件概率,记作B发生的概率称为条件概率,记作第21页,课件共35页,创作于2023年2月设A、B为两个随机事件,且事件A的概率条件概率的计算公式则在事件A发生的条件下,事件B发生的概率为第22页,课件共35页,创作于2023年2月10张奖券中有3张为中奖券,其余为欢迎惠顾.某人随机抽取三次,设Ai表示“第i次抽中”(i=1,2,3).试问:(1)第一次抽中的概率;(2)在第一次未抽中的情况下,第二次抽中的概率;(3)在第一、二次均未抽中的情况下,第三次抽中的概率.

三、进一步练习练习1[中奖率]第23页,课件共35页,创作于2023年2月根据古典概率公式,有解(1)(2)(3)第24页,课件共35页,创作于2023年2月某仓库中有一批产品200件,它是由甲、乙两厂共同生产的.其中甲厂的产品中有正品100件,次品20件,乙厂的产品中有正品65件,次品15件.现从这批产品中任取一件,设A表示“取到乙厂产品”,B表示“取到正品”.试求P(A),P(AB),P(B|A)练习2[产品检验]第25页,课件共35页,创作于2023年2月解产品的分配情况见下表.

正品次品总数甲厂10020120乙厂651580总数16535200根据古典概率公式,有第26页,课件共35页,创作于2023年2月求当A发生的条件下,B发生的概率时,基本事件总数应为80,即显然,,但是有第27页,课件共35页,创作于2023年2月7.2.4乘法公式

一、案例二、概念和公式的引出三、进一步练习第28页,课件共35页,创作于2023年2月

一、案例[射击]甲、乙二人各进行一次射击,如果两人击中目标的概率都是0.8,如何计算两人都击中目标的概率呢?分析:设A表示“甲击中目标”,B表示“乙击中目标”,C表示“两人都击中目标”,则C=AB.此问题实际上是求P(AB).第29页,课件共35页,创作于2023年2月

二、概念和公式的引出概率的乘法公式若A与B相互独立,即或那么第30页,课件共35页,创作于2023年2月甲、乙二人各进行一次射击,如果两人击中目标的概率都是0.8,求(1)两人都击中目标的概率;(2)恰有1人击中目标的概率.

三、进一步练习练习1[射击]第31页,课件共35页,创作于2023年2月解由射击本身的要求,A发生不会影响B发生的概率,B发生不会影响A发生的概率,即A与B相互独立.设A表示“甲击中目标”,B表示“乙击中目标”,(1)“两人都击中目标”即为事件AB,由乘法公式有同样分析可得,也是相互独立的.第32页,课件共35页,创作于2023年2月(2)“恰有1人击中目标”即为事件所以第33页,课件共35页,创作于2023年2月一批晶体管共10只,其中一级品

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论