




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第部分多媒体技术基础演示文稿目前一页\总数六十五页\编于十八点优选第部分多媒体技术基础目前二页\总数六十五页\编于十八点1.Whatiswavelet一种函数具有有限的持续时间、突变的频率和振幅波形可以是不规则的,也可以是不对称的在整个时间范围里的幅度平均值为零比较正弦波目前三页\总数六十五页\编于十八点部分小波波形目前四页\总数六十五页\编于十八点小波的定义
Waveletsareaclassofafunctionsusedtolocalizeagivenfunctioninbothspaceandscaling.Afamilyofwaveletscanbeconstructedfromafunction,sometimesknownasa"motherwavelet,"whichisconfinedinafiniteinterval."Daughterwavelets"arethenformedbytranslation(b)andcontraction(a).Waveletsareespeciallyusefulforcompressingimagedata,sinceawavelettransformhaspropertieswhichareinsomewayssuperiortoaconventionalFouriertransform.目前五页\总数六十五页\编于十八点Anindividualwaveletcanbedefinedby
andCalderón'sformulagivesThenAcommontypeofwaveletisdefinedusingHaarfunctions.目前六页\总数六十五页\编于十八点2.WaveletTransform老课题
函数的表示方法新方法
FourierHaarwavelettransform目前七页\总数六十五页\编于十八点(1)1807:JosephFourier傅里叶理论指出,一个信号可表示成一系列正弦和余弦函数之和,叫做傅里叶展开式。用傅里叶表示一个信号时,只有频率分辨率而没有时间分辨率,这就意味我们可以确定信号中包含的所有频率,但不能确定具有这些频率的信号出现在什么时候。为了继承傅里叶分析的优点,同时又克服它的缺点,人们一直在寻找新的方法。目前八页\总数六十五页\编于十八点傅里叶变换的定义:Amathematicaldescriptionoftherelationshipbetweenfunctionsoftimeandcorrespondingfunctionsoffrequency;amapforconvertingfromonedomaintotheother.Forexample,ifwehaveasignalthatisafunctionoftime--animpulseresponse--thentheFourierTransformwillconvertthattimedomaindataintofrequencydata,forexample,afrequencyresponse.(/glossary.htm)目前九页\总数六十五页\编于十八点(2)1910:AlfredHaar发现Haar小波哈尔(AlfredHaar)对在函数空间中寻找一个与傅里叶类似的基非常感兴趣。1909年他发现了小波,1910年被命名为Haarwavelets他最早发现和使用了小波。目前十页\总数六十五页\编于十八点(3)1945:Gabor提出STFT20世纪40年代Gabor开发了STFT(shorttimeFouriertransform)STFT的时间-频率关系图目前十一页\总数六十五页\编于十八点(4)1980:Morlet提出了CWTCWT(continuouswavelettransform)20世纪70年代,当时在法国石油公司工作的年轻的地球物理学家JeanMorlet提出了小波变换WT(wavelettransform)的概念。
20世纪80年代,从STFT开发了CWT:目前十二页\总数六十五页\编于十八点Definition-BasisFunctions:asetoflinearlyindependentfunctionsthatcanbeused(e.g.,asaweightedsum)toconstructanygivensignal.where:a=scalevariable-缩放因子k=timeshift-时间平移h*=waveletfunction-小波函数用y=scaled(dilated)andshifted(translated)Motherwaveletfunction,在CWT中,scale和position是连续变化的目前十三页\总数六十五页\编于十八点缩放(scaled)的概念例1:正弦波的算法目前十四页\总数六十五页\编于十八点缩放(scaled)的概念(续)例2:小波的缩放目前十五页\总数六十五页\编于十八点平移(translation)的概念目前十六页\总数六十五页\编于十八点(5)CWT的变换过程可分成如下5个步骤步骤1:把小波和原始信号的开始部分进行比较步骤2:计算系数c。该系数表示该部分信号与小波的近似程度。系数c的值越高表示信号与小波越相似,因此系数c可以反映这种波形的相关程度步骤3:把小波向右移,距离为,得到的小波函数为,然后重复步骤1和2。再把小波向右移,得到小波,重复步骤1和2。按上述步骤一直进行下去,直到信号结束步骤4:扩展小波,例如扩展一倍,得到的小波函数为步骤5:重复步骤1~4目前十七页\总数六十五页\编于十八点(a)二维图目前十八页\总数六十五页\编于十八点(b)三维图连续小波变换分析图目前十九页\总数六十五页\编于十八点(6)三种变换的比较目前二十页\总数六十五页\编于十八点(7)1984:subbandcoding(BurtandAdelson)SBC(subbandcoding)的基本概念:
把信号的频率分成几个子带,然后对每个子带分别进行编码,并根据每个子带的重要性分配不同的位数来表示数据20世纪70年代,子带编码开始用在语音编码上20世纪80年代中期开始在图像编码中使用1986年Woods,J.W.等人曾经使用一维正交镜像滤波器组(quadraturemirrorfilterbanks,QMF)把信号的频带分解成4个相等的子带目前二十一页\总数六十五页\编于十八点图(a)正交镜像滤波器(QMF)
目前二十二页\总数六十五页\编于十八点图中的符号表示频带降低1/2,HH表示频率最高的子带,LL表示频率最低的子带。这个过程可以重复,直到符合应用要求为止。这样的滤波器组称为分解滤波器树(decompositionfiltertrees)图(b)表示其相应的频谱目前二十三页\总数六十五页\编于十八点(8)20世纪80年代Mallat,Meyer等人提出multiresolutiontheory法国科学家Y.Meyer创造性地构造出具有一定衰减性的光滑函数,他用缩放(dilations)与平移(translations)均为2的j次幂的倍数构造了平方可积的实空间L2(R)的规范正交基,使小波得到真正的发展小波变换的主要算法由法国的科学家StephaneMallat提出S.Mallat于1988年在构造正交小波基时提出了多分辨率分析(multiresolutionanalysis)的概念,从空间上形象地说明了小波的多分辨率的特性提出了正交小波的构造方法和快速算法,叫做Mallat算法。该算法统一了在此之前构造正交小波基的所有方法,它的地位相当于快速傅里叶变换在经典傅里叶分析中的地位。目前二十四页\总数六十五页\编于十八点小波分解得到的图像目前二十五页\总数六十五页\编于十八点(9)著名科学家
InridDaubechies,RonaldCoifman和VictorWickerhauser等著名科学家把这个小波理论引入到工程应用方面做出了极其重要的贡献InridDaubechies于1988年最先揭示了小波变换和滤波器组(filterbanks)之间的内在关系,使离散小波分析变成为现实在信号处理中,自从S.Mallat和InridDaubechies发现滤波器组与小波基函数有密切关系之后,小波在信号(如声音信号,图像信号等)处理中得到极其广泛的应用。……目前二十六页\总数六十五页\编于十八点经过十几年的努力,这门学科的理论基础已经基本建立,并成为应用数学的一个新领域。这门新兴学科的出现引起了许多数学家和工程技术人员的极大关注,是国际科技界和众多学术团体高度关注的前沿领域。小波变换目前二十七页\总数六十五页\编于十八点3.离散小波变换在计算连续小波变换时,实际上也是用离散的数据进行计算的,只是所用的缩放因子和平移参数比较小而已。不难想象,连续小波变换的计算量是惊人的。为了解决计算量的问题,缩放因子和平移参数都选择(j.>0的整数)的倍数。使用这样的缩放因子和平移参数的小波变换叫做双尺度小波变换(dyadicwavelettransform),它是离散小波变换(discretewavelettransform,DWT)的一种形式。目前二十八页\总数六十五页\编于十八点使用离散小波分析得到的小波系数、缩放因子和时间关系如图所示。图(a)是20世纪40年代使用Gabor开发的短时傅里叶变换(shorttimeFouriertransform,STFT)得到的时间-频率关系图图(b)是20世纪80年代使用Morlet开发的小波变换得到的时间-缩放因子(反映频率)关系图。3.离散小波变换(续)目前二十九页\总数六十五页\编于十八点离散小波变换分析图目前三十页\总数六十五页\编于十八点DWT变换方法执行离散小波变换的有效方法是使用滤波器该方法是Mallat在1988年开发的,叫做Mallat算法这种方法实际上是一种信号的分解方法,在数字信号处理中称为双通道子带编码用滤波器执行离散小波变换的概念如图所示S表示原始的输入信号,通过两个互补的滤波器产生A和D两个信号A表示信号的近似值(approximations)D表示信号的细节值(detail)目前三十一页\总数六十五页\编于十八点在许多应用中,信号的低频部分是最重要的,而高频部分起一个“添加剂”的作用。犹如声音那样,把高频分量去掉之后,听起来声音确实是变了,但还能够听清楚说的是什么内容。相反,如果把低频部分去掉,听起来就莫名其妙。在小波分析中,近似值是大的缩放因子产生的系数,表示信号的低频分量。而细节值是小的缩放因子产生的系数,表示信号的高频分量。双通道滤波过程目前三十二页\总数六十五页\编于十八点离散小波变换可以被表示成由低通滤波器和高通滤波器组成的一棵树原始信号通过这样的一对滤波器进行的分解叫做一级分解信号的分解过程可以叠代,也就是说可进行多级分解。如果对信号的高频分量不再分解,而对低频分量连续进行分解,就得到许多分辨率较低的低频分量,形成如图所示的一棵比较大的树。这种树叫做小波分解树(waveletdecompositiontree)分解级数的多少取决于要被分析的数据和用户的需要小波分解树目前三十三页\总数六十五页\编于十八点(a)信号分解(b)系数结构(c)小波分解树小波分解树目前三十四页\总数六十五页\编于十八点小波包分解树小波分解树表示只对信号的低频分量进行连续分解。如果不仅对信号的低频分量连续进行分解,而且对高频分量也进行连续分解,这样不仅可得到许多分辨率较低的低频分量,而且也可得到许多分辨率较低的高频分量。这样分解得到的树叫做小波包分解树(waveletpacketdecompositiontree),这种树是一个完整的二进制树。目前三十五页\总数六十五页\编于十八点三级小波包分解树图表示的是一棵三级小波包分解树。小波包分解方法是小波分解的一般化,可为信号分析提供更丰富和更详细的信息。例如,小波包分解树允许信号S表示为目前三十六页\总数六十五页\编于十八点降采样过程在使用滤波器对真实的数字信号进行变换时,得到的数据将是原始数据的两倍。例如,如果原始信号的数据样本为1000个,通过滤波之后每一个通道的数据均为1000个,总共为2000个。根据尼奎斯特(Nyquist)采样定理就提出了降采样(downsampling)的方法,即在每个通道中每两个样本数据取一个,得到的离散小波变换的系数(coefficient)分别用cD和cA表示目前三十七页\总数六十五页\编于十八点降采样过程如图所示。图中的符号表示降采样。目前三十八页\总数六十五页\编于十八点小波变换的定义AtransformwhichlocalizesafunctionbothinspaceandscalingandhassomedesirablepropertiescomparedtotheFouriertransform.Thetransformisbasedonawaveletmatrix,whichcanbecomputedmorequicklythantheanalogousFouriermatrix.目前三十九页\总数六十五页\编于十八点HaarTransformAone-dimensionaltransformwhichmakesuseoftheHaarfunctions.
H-Transform,HaarFunctionReferencesHaar,A.
©1999-2003WolframResearch,Inc.header...H-TransformAtwo-dimensionalgeneralizationoftheHaartransformwhichisusedforthecompressionofastronomicalimages.Thealgorithmconsistsofdividingtheimageintoblocksofpixels,callingthepixelsintheblock,,,and.Foreachblock,computethefourcoefficientsConstruct...二、Haar小波变换目前四十页\总数六十五页\编于十八点1.哈尔函数哈尔基函数
基函数是生成矢量空间Vj
而定义的一组线性无关的函数,可以用来构造任意给定的信号。也称尺度函数(scalingfunction),用符号Vj
表示。哈尔小波函数
哈尔小波函数是生成矢量的一组线性无关的函数,用符号Wj表示。矢量空间Wj中的小波可用来表示一个函数在矢量空间中不能表示的部分。见《多媒体技术基础》第2版,8.2目前四十一页\总数六十五页\编于十八点2.哈尔变换原理假设两个信号的数值分别为a和b,计算它们的和与差,从s和d重新获得a和b,目前四十二页\总数六十五页\编于十八点哈尔变换举例【例】假设有一幅分辨率只有4个像素的一维图像,对应的像素值或者叫做图像位置的系数分别为:
[9735]
计算它的哈尔小波变换系数步骤1:求均值(averaging)。计算相邻像素对的平均值,得到一幅分辨率比较低的新图像,它的像素数目变成了2个,即新的图像的分辨率是原来的1/2,相应的像素值为:[84]目前四十三页\总数六十五页\编于十八点哈尔变换举例(续)步骤2:求差值(differencing)
用2个像素表示这幅图像时,图像的信息已经部分丢失。为了能够从由2个像素组成的图像重构出由4个像素组成的原始图像,就需要存储一些图像的细节系数(detailcoefficient),以便在重构时找回丢失的信息。原始图像可用下面的两个平均值和两个细节系数表示,[841-1]步骤3:重复步骤1和2
把由第一步分解得到的图像进一步分解成分辨率更低的图像和细节系数。在这个例子中,分解到最后,就用一个像素的平均值6和三个细节系数2,1和-1表示整幅图像:[621-1]目前四十四页\总数六十五页\编于十八点哈尔变换过程分辨率平均值细节系数4[9735]2[84][1-1]1[6][2]把由4像素组成的一幅图像用一个平均像素值和三个细节系数表示这个过程就叫做哈尔小波变换(Haarwavelettransform),也称哈尔小波分解(Haarwaveletdecomposition)这个概念可以推广到使用其他小波基的变换目前四十五页\总数六十五页\编于十八点3.哈尔变换的特性从这个例子中我们可以看到:变换过程中没有丢失信息,因为能够从所记录的数据中重构出原始图像。对这个给定的变换,我们可以从所记录的数据中重构出各种分辨率的图像。例如,在分辨率为1的图像基础上重构出分辨率为2的图像,在分辨率为2的图像基础上重构出分辨率为4的图像通过变换之后产生的细节系数的幅度值比较小,这就为图像压缩提供了一种途径。例如,去掉一些微不足道的细节系数并不影响对重构图像的理解目前四十六页\总数六十五页\编于十八点4.一维哈尔小波变换求均值和差值的过程实际上就是一维小波变换的过程,现在用数学方法重新描述小波变换的过程目前四十七页\总数六十五页\编于十八点(1)哈尔基函数基函数是一组线性无关的函数,可以用来构造任意给定的信号,如用基函数的加权和表示。定义了基和矢量空间,就可以把由2j
个像素组成的一维图像看成为矢量空间中的一个矢量。最简单的基函数是哈尔基函数(Haarbasisfunction)。哈尔基函数在1909年提出,它是由一组分段常值函数(piecewise-constantfunction)组成的函数集。这个函数集定义在半开区间上,每一个分段常值函数的数值在一个小范围里是“1”,其他地方为“0”以图像为例并使用线性代数中的矢量空间来说明哈尔基函数。目前四十八页\总数六十五页\编于十八点这4个常值函数就是构成矢量空间V2的基哈尔基函数(续1)目前四十九页\总数六十五页\编于十八点哈尔基函数(续2)为了表示矢量空间中的矢量,每一个矢量空间Vj
都需要定义一个基(basis)为生成矢量空间而定义的基函数也叫做尺度函数(scalingfunction),这种函数通常用符号表示。哈尔基函数定义为目前五十页\总数六十五页\编于十八点哈尔基函数(续3)哈尔基尺度函数定义为
其中,j为尺度因子,改变j使函数图形缩小或者放大;i为平移参数,改变i使函数沿轴方向平移。空间矢量Vj定义为其中,表示线性生成(linearspan)
目前五十一页\总数六十五页\编于十八点(2)哈尔小波函数小波函数通常用表示。与框函数相对应的小波称为基本哈尔小波函数(Haarwaveletfunctions),并由下式定义,哈尔小波尺度函数定义为,目前五十二页\总数六十五页\编于十八点哈尔小波函数(续1)用小波函数构成的矢量空间用Wj表示为,根据哈尔小波函数的定义,可以写出生成,W0,W1和W2等矢量空间的小波函数
其中,SP表示线性生成;j为尺度因子,改变j使函数图形缩小或者放大;i为平移参数,改变i使函数沿轴方向平移目前五十三页\总数六十五页\编于十八点哈尔小波函数(续2)生成矢量空间W2的哈尔小波:目前五十四页\总数六十五页\编于十八点哈尔小波函数(续3)生成矢量空间W2的哈尔小波目前五十五页\总数六十五页\编于十八点(3)哈尔小波变换过程用V2
中的哈尔基表示图像=[9735]有2j=22=4个像素,因此可以用生成矢量空间中的框基函数的线性组合表示,其中的系数是4个正交的像素值[9735],因此,
目前五十六页\总数六十五页\编于十八点哈尔小波变换过程(续1)图I(x)用V2中的哈尔基表示目前五十七页\总数六十五页\编于十八点用V0,W0和W1中的函数表示图像生成矢量空间V0的基函数为,生成矢量空间W0的小波函数为,生成矢量空间W1的小波函数为和,根据哈尔小波变换过程(续2)I(x)可表示成目前五十八页\总数六十五页\编于十八点其中,4个系数,,和就是原始图像通过哈尔小波变换所得到的系数,用来表示整幅图像的平均值和不同分辨率下的细节系数。4个函数,,和就是构成空间V2的基。哈尔小波变换过程(续3)用图表示为目前五十九页\总数六十五页\编于十八点一幅图像是一个二维的数据阵列,进行小波变换时可以对阵列的每一行进行变换,然后对行变换之后的阵列的每一列进行变换,最后对经过变换之后的图像数据阵列进行编码1.求均值与求差值
使用求均值和求差值的方法,对矩阵的每一行进行计算3.使用线性代数
由于图像可用矩阵表示,使用N个矩阵M1,M2,和MN
同样可以对图像矩阵进行求平均值和求差值。这N个矩阵分别是第一、第二和第N次分解图像时所构成的矩阵5.二维哈尔小波变换目前六十页\总数六十五页\编于十八点二维哈尔小波变换(续1)用小波对图像进行变换有两种方法,一种叫做标准分解(standarddecomposition),另一种叫做非标准分解(nonstandarddeco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福州墨尔本理工职业学院《企业资源规划系统与应用》2023-2024学年第二学期期末试卷
- 郑州大学《机器人机械系统》2023-2024学年第二学期期末试卷
- 衡水学院《影视文学研究》2023-2024学年第二学期期末试卷
- 厢式改装车、特种车辆项目效益评估报告
- 罗定职业技术学院《别墅建筑空间设计》2023-2024学年第二学期期末试卷
- 《 峨日朵雪峰之侧》教学设计 2024-2025学年统编版高中语文必修上册
- 扬州大学广陵学院《机器学习实验》2023-2024学年第二学期期末试卷
- 昆玉职业技术学院《工业机器人基础与实践》2023-2024学年第二学期期末试卷
- 浙江外国语学院《水产养殖学创新创业教育》2023-2024学年第二学期期末试卷
- 【化学】认识有机化合物 第一课时教学设计 2024-2025学年高一下学期化学人教版(2019)必修第二册
- 西方政治思想史-课件
- 学生心理健康测量表
- GA745-2017银行自助设备、自助银行安全防范要求国标
- 邯郸市垃圾填埋场封场方案
- 2020闽教版信息技术四年级(下册)全册教案
- introduction to pipeline pilot在处理数据中的一些应用
- 智能中台数据底座解决方案
- 突发性聋诊疗指南 (2015版)
- 光伏发电工程施工组织设计施工工程光伏发电工程光伏发电施工组织设计
- 11钢的表面淬火解析
- 导数应用举例
评论
0/150
提交评论