![(暑假班)人教版高中数学必修第一册:03《集合的基本运算》教案(教师版)_第1页](http://file4.renrendoc.com/view/efa6c8cc67c5081508ad55ee6e64943e/efa6c8cc67c5081508ad55ee6e64943e1.gif)
![(暑假班)人教版高中数学必修第一册:03《集合的基本运算》教案(教师版)_第2页](http://file4.renrendoc.com/view/efa6c8cc67c5081508ad55ee6e64943e/efa6c8cc67c5081508ad55ee6e64943e2.gif)
![(暑假班)人教版高中数学必修第一册:03《集合的基本运算》教案(教师版)_第3页](http://file4.renrendoc.com/view/efa6c8cc67c5081508ad55ee6e64943e/efa6c8cc67c5081508ad55ee6e64943e3.gif)
![(暑假班)人教版高中数学必修第一册:03《集合的基本运算》教案(教师版)_第4页](http://file4.renrendoc.com/view/efa6c8cc67c5081508ad55ee6e64943e/efa6c8cc67c5081508ad55ee6e64943e4.gif)
![(暑假班)人教版高中数学必修第一册:03《集合的基本运算》教案(教师版)_第5页](http://file4.renrendoc.com/view/efa6c8cc67c5081508ad55ee6e64943e/efa6c8cc67c5081508ad55ee6e64943e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.3集合的基本运算第1课时并集与交集学习目标核心素养1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(重点、难点)2.能使用Venn图表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)1.借助Venn图培养直观想象素养.2.通过集合并集、交集的运算提升数学运算素养.1.并集思考:(1)“x∈A或x∈B”包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?提示:(1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x∉B;x∈B,但x∉A;x∈A,且x∈B.用Venn图表示如图所示.(2)不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数和.2.交集3.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪AA∩B=B∩AA∪A=AA∩A=AA∪∅=AA∩∅=∅1.设集合M={-1,0,1},N={0,1,2},则M∪N=________,M∩N=________.{-1,0,1,2}{0,1}[∵M={-1,0,1},N={0,1,2},∴M∩N={0,1},M∪N={-1,0,1,2}.]2.若集合A={x|-3<x<4},B={x|x>2},则A∪B=________.{x|x>-3}[如图故A∪B={x|x>-3}.]3.满足{1}∪B={1,2}的集合B可能等于________.{2}或{1,2}[∵{1}∪B={1,2},∴B可能为{2}或{1,2}.]并集概念及其应用【例1】(1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}(1)D(2)A[M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N={-2,0,2},故选D.(2)在数轴上表示集合M,N,如图所示,则M∪N={x|x<-5或x>-3}.]求集合并集的两种基本方法1定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;2数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.1.已知集合A={0,2,4},B={0,1,2,3,5},则A∪B=________.{0,1,2,3,4,5}[A∪B={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}.]交集概念及其应用【例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4}D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2(1)A(2)D[(1)∵A={x|-1≤x≤2},B={x|0≤x≤4},如图,故A∩B={x|0≤x≤2}.(2)∵8=3×2+2,14=3×4+2,∴8∈A,14∈A,∴A∩B={8,14},故选D.]1.求集合交集的运算类似于并集的运算,其方法为:(1)定义法,(2)数形结合法.2.若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.2.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}A[由题意知A∩B={0,2}.]3.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2B.a>2C.a≥-1D.a>-1D[因为A∩B≠∅,所以集合A,B有公共元素,在数轴上表示出两个集合,如图所示,易知a>-1.]集合交、并运算的性质及综合应用[探究问题]1.设A,B是两个集合,若A∩B=A,A∪B=B,则集合A与B具有什么关系?提示:A∩B=A⇔A∪B=B⇔A⊆B.2.若A∩B=A∪B,则集合A,B间存在怎样的关系?提示:若A∩B=A∪B,则集合A=B.【例3】已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.[思路点拨]eq\x(A∪B=A)eq\o(→,\s\up15(等价转化))eq\x(B⊆A)eq\o(→,\s\up15(分B=∅和B≠∅))eq\x(建立k的不等关系)eq\o(→,\s\up15(求交集))eq\x(得k的范围)[解](1)当B=∅,即k+1>2k-1时,k<2,满足A∪B=A.(2)当B≠∅时,要使A∪B=A,只需eq\b\lc\{\rc\(\a\vs4\al\co1(-3<k+1,,4≥2k-1,,k+1≤2k-1,))解得2≤k≤eq\f(5,2).综合(1)(2)可知k≤eq\f(5,2).1.把本例条件“A∪B=A”改为“A∩B=A”,试求k的取值范围.[解]由A∩B=A可知A⊆B.所以eq\b\lc\{\rc\(\a\vs4\al\co1(-3≥k+1,,2k-1≥4,))即eq\b\lc\{\rc\(\a\vs4\al\co1(k≤-4,,k≥\f(5,2),))所以k∈∅.所以k的取值范围为∅.2.把本例条件“A∪B=A”改为“A∪B={x|-3<x≤5}”,求k的值.[解]由题意可知eq\b\lc\{\rc\(\a\vs4\al\co1(-3<k+1≤4,,2k-1=5,))解得k=3.所以k的值为3.1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A,B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分.特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.1.思考辨析(1)集合A∪B中的元素个数就是集合A和集合B中的所有元素的个数和.()(2)当集合A与集合B没有公共元素时,集合A与集合B就没有交集.()(3)若A∪B=A∪C,则B=C.()(4)A∩B⊆A∪B.()[答案](1)×(2)×(3)×(4)√2.已知集合M={-1,0,1},P={0,1,2,3},则图中阴影部分所表示的集合是()A.{0,1}B.{0}C.{-1,2,3}D.{-1,0,1,2,3}D[由Venn图,可知阴影部分所表示的集合是M∪P.因为M={-1,0,1},P={0,1,2,3},故M∪P={-1,0,1,2,3}.故选D.]3.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=()A.{1}B.{2}C.{-1,2}D.{1,2,3}B[∵B={x|(x+1)(x-2)=0,x∈Z}={-1,2},A={1,2,3}∴A∩B={2}.]4.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.(1)求a,b的值及A,B;(2)求(A∪B)∩C.[解](1)∵A∩B={2},∴4+2a+12=0,即a=-8,4+6+2b=0,即b=-5,∴A={x|x2-8x+12=0}={2,6},B={x|x2+3x-10=0}={2,-5}.(2)∵A∪B={-5,2,6},C={2,-3},∴(A∪B)∩C={2}.第2课时补集学习目标核心素养1.了解全集的含义及其符号表示.(易混点)2.理解给定集合中一个子集的补集的含义,并会求给定子集的补集.(重点、难点)3.会用Venn图、数轴进行集合的运算.(重点)1.通过补集的运算培养数学运算素养.2.借助集合思想对实际生活中的对象进行判断归类,培养数学抽象素养.1.全集(1)定义:如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.思考:全集一定是实数集R吗?提示:全集是一个相对概念,因研究问题的不同而变化,如在实数范围内解不等式,全集为实数集R,而在整数范围内解不等式,则全集为整数集Z.2.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA符号语言∁UA={x|x∈U,且x∉A}图形语言1.已知全集U={0,1,2},且∁UA={2},则A=()A.{0}B.{1}C.∅D.{0,1}D[∵U={0,1,2},∁UA={2},∴A={0,1},故选D.]2.设全集为U,M={0,2,4},∁UM={6},则U等于()A.{0,2,4,6}B.{0,2,4}C.{6}D.∅A[∵M={0,2,4},∁UM={6},∴U=M∪∁UM={0,2,4,6},故选A.]3.若集合A={x|x>1},则∁RA=________.{x|x≤1}[∵A={x|x>1},∴∁RA={x|x≤1}.]补集的运算【例1】(1)已知全集为U,集合A={1,3,5,7},∁UA={2,4,6},∁UB={1,4,6},则集合B=________;(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁UA=________.(1){2,3,5,7}(2){x|x<-3或x=5}[(1)法一(定义法):因为A={1,3,5,7},∁UA={2,4,6},所以U={1,2,3,4,5,6,7}.又∁UB={1,4,6},所以B={2,3,5,7}.法二(Venn图法):满足题意的Venn图如图所示.由图可知B={2,3,5,7}.(2)将集合U和集合A分别表示在数轴上,如图所示.由补集的定义可知∁UA={x|x<-3或x=5}.]求集合的补集的方法1定义法:当集合中的元素较少时,可利用定义直接求解.2Venn图法:借助Venn图可直观地求出全集及补集.3数轴法:当集合中的元素连续且无限时,可借助数轴求解,此时需注意端点问题.1.(1)设集合A={x∈N*|x≤6},B={2,4},则∁AB等于()A.{2,4}B.{0,1,3,5}C.{1,3,5,6}D.{x∈N*|x≤6}(2)已知U={x|x>0},A={x|2≤x<6},则∁UA=______.(1)C(2){x|0<x<2,或x≥6}[(1)因为A={x∈N*|x≤6}={1,2,3,4,5,6},B={2,4},所以∁AB={1,3,5,6}.故选C.(2)如图,分别在数轴上表示两集合,则由补集的定义可知,∁UA={x|0<x<2,或x≥6}.]集合交、并、补集的综合运算【例2】设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁RB,∁R(A∪B)及(∁RA)∩B.[解]把集合A,B在数轴上表示如下:由图知∁RB={x|x≤2,或x≥10},A∪B={x|2<x<10},所以∁R(A∪B)={x|x≤2,或x≥10}.因为∁RA={x|x<3,或x≥7},所以(∁RA)∩B={x|2<x<3,或7≤x<10}.解决集合交、并、补运算的技巧1如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.2如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.2.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁UB)∩A={1,9},A∩B={3},(∁UA)∩(∁UB)={4,6,7},求集合A,B.[解]法一(Venn图法):根据题意作出Venn图如图所示.由图可知A={1,3,9},B={2,3,5,8}.法二(定义法):(∁UB)∩A={1,9},(∁UA)∩(∁UB)={4,6,7},∴∁UB={1,4,6,7,9}.又U={1,2,3,4,5,6,7,8,9},∴B={2,3,5,8}.∵(∁UB)∩A={1,9},A∩B={3},∴A={1,3,9}.与补集有关的参数值的求解[探究问题]1.若A,B是全集U的子集,且(∁UA)∩B=∅,则集合A,B存在怎样的关系?提示:B⊆A.2.若A,B是全集U的子集,且(∁UA)∪B=U,则集合A,B存在怎样的关系?提示:A⊆B.【例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁UA)∩B=∅,求实数m的取值范围.[思路点拨]法一:eq\x(由A求∁UA)eq\o(→,\s\up15(结合数轴),\s\do15(∁UA∩B=∅))eq\x(建立m的不等关系)法二:eq\x(∁UA∩B=∅)eq\o(→,\s\up15(等价转化))eq\x(B⊆A)[解]法一(直接法):由A={x|x+m≥0}={x|x≥-m},得∁UA={x|x<-m}.因为B={x|-2<x<4},(∁UA)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是{m|m≥2}.法二(集合间的关系):由(∁UA)∩B=∅可知B⊆A,又B={x|-2<x<4},A={x|x+m≥0}={x|x≥-m},结合数轴:得-m≤-2,即m≥2.1.(变条件)将本例中条件“(∁UA)∩B=∅”改为“(∁UA)∩B=B”,其他条件不变,则m的取值范围又是什么?[解]由已知得A={x|x≥-m},所以∁UA={x|x<-m},又(∁UA)∩B=B,所以-m≥4,解得m≤-4.2.(变条件)将本例中条件“(∁UA)∩B=∅”改为“(∁UB)∪A=R”,其他条件不变,则m的取值范围又是什么?[解]由已知A={x|x≥-m},∁UB={x|x≤-2或x≥4}.又(∁UB)∪A=R,所以-m≤-2,解得m≥2.由集合的补集求解参数的方法1如果所给集合是有限集,由补集求参数问题时,可利用补集定义并结合知识求解.2如果所给集合是无限集,与集合交、并、补运算有关的求参数问题时,一般利用数轴分析法求解.1.求某一集合的补集的前提必须明确全集,同一集合在不同全集下的补集是不同的.2.补集作为一种思想方法,为我们研究问题开辟了新思路,在正向思维受阻时,改用逆向思维,如若直接求A困难,则使用“正难则反”策略,先求∁UA,再由∁U(∁UA)=A求A.1.思考辨析(1)全集一定含有任何元素.()(2)集合∁RA=∁QA.()(3)一个集合的补集一定含有元素.()[答案](1)×(2)×(3)×2.U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}D[∵∁UA={0,4},B={2,4},∴(∁UA)∪B={0,2,4}.]3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁RS)∪T等于()A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}C[因为S={x|x>-2},所以∁RS={x|x≤-2}.而T={x|-4≤x≤1},所以(∁RS)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.]4.已知全集U={2,0,3-a2},U的子集P={2,a2-a-2},∁UP={-1},求实数a的值.[解]由已知,得-1∈U,且-1∉P,因此eq\b\lc\{\rc\(\a\vs4\al\co1(3-a2=-1,,a2-a-2=0,))解得a=2.当a=2时,U={2,0,-1},P={2,0},∁UP={-1},满足题意.因此实数a的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曲靖2025年云南曲靖市麒麟区益宁街道卫生服务中心招聘笔试历年参考题库附带答案详解
- 云南工贸职业技术学院《简明空气动力学》2023-2024学年第二学期期末试卷
- 徐州医科大学《供应链系统模拟实验》2023-2024学年第二学期期末试卷
- 2024年02月山东2024年中国民生银行济南分行诚聘英才笔试历年参考题库附带答案详解
- 四川文化产业职业学院《化学史》2023-2024学年第二学期期末试卷
- 山东工程职业技术大学《国际商务管理》2023-2024学年第二学期期末试卷
- 广东职业技术学院《虚拟现实设计》2023-2024学年第二学期期末试卷
- 兰州博文科技学院《宗教经验之种种》2023-2024学年第二学期期末试卷
- 2025年全球医疗趋势报告
- 2024年两种人考试(不含带电作业)练习试题
- 成都四川成都简阳市简城街道便民服务和智慧蓉城运行中心招聘综治巡防队员10人笔试历年参考题库附带答案详解
- 2025-2030全球废弃食用油 (UCO) 转化为可持续航空燃料 (SAF) 的催化剂行业调研及趋势分析报告
- 山东省临沂市兰山区2024-2025学年七年级上学期期末考试生物试卷(含答案)
- 湖北省武汉市2024-2025学年度高三元月调考英语试题(含答案无听力音频有听力原文)
- 商务星球版地理八年级下册全册教案
- 天津市河西区2024-2025学年四年级(上)期末语文试卷(含答案)
- 2025年空白离婚协议书
- 校长在行政会上总结讲话结合新课标精神给学校管理提出3点建议
- 北京市北京四中2025届高三第四次模拟考试英语试卷含解析
- 2024年快递行业无人机物流运输合同范本及法规遵循3篇
- T-CSUS 69-2024 智慧水务技术标准
评论
0/150
提交评论