版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.直角三角形两边分别为3和4,则这个直角三角形面积为()A.6 B.12 C. D.或62.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8 B.5,6,8 C.,, D.4,5,63.下列选项中,平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对边分别相等C.对角线互相平分 D.对角线相等4.已知函数y=,则自变量x的取值范围是()A.﹣1<x<1 B.x≥﹣1且x≠1 C.x≥﹣1 D.x≠15.要使二次根式有意义,x必须满足()A.x≤2 B.x≥2 C.x<2 D.x>26.对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是47.在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,928.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为()A.1 B.2 C.3 D.49.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,310.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知直线不经过第一象限,则的取值范围是_____________。12.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°,AB=2,则BC的长为___________.13.如图,的对角线相交于点,点分别是线段的中点,若厘米,的周长是厘米,则__________厘米.14.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.15.关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.16.已知,化简________17.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.18.不等式组的解集是________三、解答题(共66分)19.(10分)某校八年级同学参加社会实践活动,到“庐江台湾农民创业园”了解大棚蔬菜生长情况.他们分两组对西红柿的长势进行观察测量,分别收集到10株西红柿的高度,记录如下(单位:厘米)第一组:32394555605460285641第二组:51564446405337475046根据以上数据,回答下列问题:(1)第一组这10株西红柿高度的平均数是,中位数是,众数是.(2)小明同学计算出第一组方差为S12=122.2,请你计算第二组方差,并说明哪一组西红柿长势比较整齐.20.(6分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.21.(6分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.(1)求m、k的值;(2)求∠ACO的度数和线段AB的长.22.(8分)如图,在中,是它的一条对角线,过、两点分别作,,、为垂足.求证:四边形是平行四边形.23.(8分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来=(2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。(3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。24.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:(1)甲成绩的中位数是______,乙成绩的众数是______;(2)经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.25.(10分)如图,在中,点、分别在边、上,且AE=CF,连接,请只用无刻度的直尺画出线段的中点,并说明这样画的理由.26.(10分)解方程:(1);(2)(x﹣2)2=2x﹣1.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
此题要考虑全面,一种是3,4为直角边;一种是4是斜边,分情况讨论即可求解.【详解】当3和4是直角边时,面积为;当4是斜边时,另一条直角边是,面积为,故D选项正确.【点睛】此题主要考查勾股定理和三角形面积的计算,注意要分情况讨论.2、C【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】,,,能组成直角三角形的一组数是、、.故选:.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、D【解析】
根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得正确选项.【详解】∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A.B.C正确,D错误.故选D.【点睛】本题考查平行四边形的性质,解题关键在于对平行四边形性质的理解.4、B【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5、B【解析】试题分析:根据二次根式的意义可知二次根式有意义的条件是被开方数大于等于0,因此可得x-1≥0,解这个不等式可得x≥1.故选B考点:二次根式的意义6、A【解析】试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.考点:极差,算术平均数,中位数,众数.7、B【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、B【解析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.9、A【解析】
根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【详解】∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=1.5中位数为:(2+4)÷2=1.故选A【点睛】本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.10、B【解析】
结合中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,本选项错误;
B、是中心对称图形,本选项正确;
C、不是中心对称图形,本选项错误;
D、不是中心对称图形,本选项错误.
故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、【解析】
当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.【详解】解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,综上,的取值范围是:.【点睛】本题考查了一次函数系数与象限位置的关系,注意分类讨论.12、【解析】
由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.【详解】,,四边形为矩形,为等边三角形,,,在中,由勾股定理可求得.故答案为:.【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.13、【解析】
先由平行四边形的性质求出OA+OB的值,再由的周长是厘米,求出AB的值,然后根据三角形的中位线即可求出EF的值.【详解】∵四边形ABCD是平行四边形,厘米,∴OA+OB=12厘米,∵的周长是厘米,∴AB=20-12=8厘米,∵点分别是线段的中点,∴EF是的中位线,∴EF=AB=4厘米.故答案为:4.【点睛】本题考查了平行四边形的性质,三角形中位线的判定与性质.三角形的中位线平行于第三边,并且等于第三边的一半.14、5【解析】
根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.【详解】解:由题意可知,1+3+x+4+5+6=4×6,解得:x=5,所以这组数据的众数是5.故答案为5.【点睛】此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.15、【解析】
整理成一般式后,利用因式分解法求解可得.【详解】解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.故答案为:.【点睛】本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.16、【解析】
根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,∴|a−b|=b−a.故答案为:.【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.17、乙【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.18、x1【解析】分析:先求出两个不等式的解集,再求其公共解.详解:,解不等式①得:x>﹣2,解不等式②得:x>1,所以,不等式组的解集是x>1.故答案为:x>1.点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题(共66分)19、(1)47,49.5,60;(2)第二组西红柿长势比较整齐.【解析】
(1)根据平均数的计算公式进行计算求出第一组这10株西红柿高度的平均数,再根据中位数和众数的定义即可得出答案;(2)先求出第二组方差,再根据方差的定义,方差越小数据越稳定即可求解.【详解】解:(1)平均数:(32+39+45+55+60+54+60+28+56+41)=47,中位数:49.5众数:60故答案为:47,49.5,60;(2)第二组数据的平均数为:47,S22=(16+81+9+1+49+36+100+0+9+1)=30.2因为S12>S22,所以,第二组西红柿长势比较整齐.【点睛】本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数,中位数与众数.熟练掌握方差公式是解决本题的关键.20、(1)x1=,x2=;(2)x1=2,x2=−.【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.【详解】(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.【点睛】本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.21、(1)m=4,k=2;(2)∠ACO=45°,AB.【解析】
(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;
(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.【详解】解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,
把A(2,4)代入y=kx得4=2k,解得k=2;
(2)由y=-x+6可得B(6,0)、C(0,6),
∴OB=OC=6,
∴△OBC是等腰直角三角形,
∴∠ACO=45°.
设AD⊥x轴于点D,AE⊥y轴于点E,
则AD=4,BD=OB-OD=6-2=4,
在Rt△ABD中,AB=.【点睛】本题主要考查了待定系数法求函数解析式,等腰三角形的判定与性质、勾股定理等知识,掌握基本定理是解题的关键.22、详见解析【解析】
由题目条件推出,推出;由,推出根据有一组对边平行且相等的四边形是平行四边形,可以得出结论.【详解】证明:∵四边形为平行四边形,∴,.∵.∵,,∴.∴,.∴.∴四边形是平行四边形.【点睛】本题考查了平行四边形的判定,掌握平行四边形的判定定理是解题的关键.23、(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.【解析】
(1)以AD为公共边,有∠ABD=∠ACD;(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.【详解】解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;(2)四边形ACEF为正方形,理由是:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°∴∠DAC=∠CBD=45°∵四边形ACEF是菱形,∴AELCF,∴∠ADC=90°,∴△ADC是等腰直角三角形,∴AD=CD,.AE=CF,∴菱形ACEF是正方形;(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,∵∠DBG=45°,∴△BDG是等腰直角三角形,BD=4,∵BG=4,四边形ACEF是正方形,∴AC=CE,∠ACE=90°,AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿元旦创意活动方案模板五篇
- 2025年度水电安装工程合同解除通知合同3篇
- 二零二五年度高端别墅开荒保洁服务合同范本2篇
- 宁夏工业职业学院《测量与地图学》2023-2024学年第一学期期末试卷
- 小学美术教学中的创意激发与实施
- 兰州大学《DCS与现场总线》2023-2024学年第一学期期末试卷
- 江苏联合职业技术学院《无机与分析化学》2023-2024学年第一学期期末试卷
- 二零二五年度电力施工设备租赁合同2篇
- 吉林省四平市双辽市校联考2024-2025学年七年级上学期期末语文试题(原卷版)
- 收纳艺术进家庭打造个性化家居空间的秘诀
- 新教材北师大版数学一年级上册教学反思全册
- 电路分析(中国石油大学(华东))智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 分润模式合同模板
- 2023-2024学年湖北省黄石市黄石港区八年级(上)期末数学试卷(含解析)
- 2024年长春医学高等专科学校单招职业适应性测试题库必考题
- 旅行社合伙经营协议
- 普通高中地理新课程标准试题与答案(2017年版2020年修订)
- 水电费用及分摊方式
- 桩基检测选桩方案
- 脑梗塞老人的营养护理措施
- 2023年河南省中考数学试卷含答案解析
评论
0/150
提交评论