版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.矩形的面积为,一边长为,则另一边长为()A. B. C. D.2.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x> B.<x< C.x< D.0<x<3.目前,世界上能制造出的最小晶体管的长度只有米,将用科学记数法表示为().A. B. C. D.4.如图,菱形的对角线、相交于点,,,过点作于点,连接,则的长为()A. B.2 C.3 D.65.函数y=x和在同一直角坐标系中的图象大致是()A. B. C. D.6.给出下列几组数:①4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是().A.①②B.③④C.①③④D.④7.关于的分式方程有增根,则的值为A.0 B. C. D.8.已知是完全平方式,则的值为()A.2 B.4 C. D.9.若是一个完全平方式,则k的值是()A.8 B.-2 C.-8或-2 D.8或-210.分式方程有增根,则的值为A.0和3 B.1 C.1和 D.311.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C. D.12.正比例函数的图像上的点到两坐标轴的距离相等,则().A.1 B.-1 C.±1 D.±2二、填空题(每题4分,共24分)13.有一个不透明的袋子里装有若干个大小相同、质地均匀的白球,由于某种原因,不允许把球全部倒出来数,但可以从中每次摸出一个进行观察.为了估计袋中白球的个数,小明再放入8个除颜色外,大小、质地均相同的红球,摇匀后从中随机摸出一个球并记下颜色,再把它放回袋中摇匀.这样不断重复摸球100次,其中有16次摸到红球,根据这个结果,可以估计袋中大约有白球_____个.14.若有意义,则字母x的取值范围是.15.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.16.如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.17.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是_____.18.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为__________.三、解答题(共78分)19.(8分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.(1)求证:OE=OF;(2)连接BE,DF,求证:BE=DF.20.(8分)在△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)若a=5,b=10,求c的值;(2)若c=,b=1,求a的值.21.(8分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B岛,乙船到达C岛,若C,B两岛相距60海里,问乙船的航速是多少?22.(10分)(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.23.(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.24.(10分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和92.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).25.(12分)计算:﹣3+2.26.某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】∵矩形的面积为18,一边长为,∴另一边长为,故选:C.【点睛】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.2、B【解析】
由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx的解集为<x<.【详解】把(,m)代入y1=kx+1,可得m=k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<;当kx+1<mx时,(m﹣2)x+1<mx,解得x>,∴不等式组mx﹣2<kx+1<mx的解集为<x<,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、B【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,可得到答案【详解】解:∵∴将用科学记数法表示为故选B【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值4、C【解析】
先证明△ABC为等边三角形,再证明OE是△ABC的中位线,利用三角形中位线即可求解.【详解】解:∵ABCD是菱形,
∴AB=BC,OA=OC,∵∠ABC=60°,
∴△ABC为等边三角形,∵,∴E是BC中点,
∴OE是△ABC的中位线,
∴OE=AB,∵,∴OE=3;
故选:C.【点睛】本题考查了菱形的性质以及等边三角形判定和性质,证明△ABC为等边三角形是解答本题的关键.5、D【解析】分析:根据正比例函数和一次函数的图象与系数的关系进行判断即可.详解:根据正比例函数和反比例函数的性质可得的图象经过一、三象限,图象在二、四象限,符合条件的只有选项D,故选D.点睛:考查正比例函数和反比例函数图象与系数的关系,熟练掌握它们的图象与性质是解题的关键.6、D【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+(2mn)2=(m2+n2)2,且m>n>0,∴能组成直角三角形.故选D.点睛:本题关键在于勾股定理逆定理的运用.7、D【解析】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.详解:方程两边都乘(x+2),得:x-5=m,∵原方程有增根,∴最简公分母:x+2=0,解得x=-2,当x=-2时,m=-1.故选D.点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8、C【解析】
根据完全平方公式的形式,可得答案.【详解】解:已知=x²+4mx+4²是完全平方式,
∴4m=±8m=2或m=-2,
故选:C.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.9、D【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵x1+1(k-3)x+15是一个整式的平方,
∴1(k-3)=±10,
解得:k=8或-1.
故选:D.【点睛】考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10、D【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.【详解】∵分式方程-1=有增根,∴x﹣1=0,x+1=0,∴x1=1,x1=﹣1.两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,整理得,m=x+1,当x=1时,m=1+1=2;当x=﹣1时,m=﹣1+1=0,当m=0,方程无解,∴m=2.故选D.11、D【解析】试题分析:根据一元一次不等式的解法解不等式x+1≤0,得x≤﹣1.表示在数轴上为:.故选D考点:不等式的解集12、C【解析】
根据题意,正比例函数图象上的点的坐标可设为(a,a)或(a,-a),然后把它们分别代入y=kx可计算出对应的k的值,从而可确定正比例函数解析式.【详解】∵正比例函数图象上的点到两坐标轴的距离相等,∴正比例函数图象上的点的坐标可设为(a,a)或(a,-a),∴k•a=a或k•a=-a∴k=1或-1,故选C.【点睛】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx,然后把一组对应值代入求出k,从而得到正比例函数解析式.二、填空题(每题4分,共24分)13、1【解析】【分析】由口袋中有8个红球,利用红球在总数中所占比例与实验比例应该相等,列方程求出即可.【详解】设袋中白球有x个,根据题意,得:,解得:x=1,经检验:x=1是原分式方程的解,即估计袋中大约有白球1个,故答案为:1.【点睛】本题考查了利用频率估计概率,根据已知得出红球在总数中所占比例应该与实验比例相等是解决本题的关键.14、x≥﹣1.【解析】
根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.15、电影票的售价电影票的张数,票房收入.【解析】
根据常量,变量的定义进行填空即可.【详解】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为:电影票的售价;电影票的张数,票房收入.【点睛】本题考查了常量和变量,掌握常量和变量的定义是解题的关键.16、【解析】分析:根据旋转的性质得到△ABF≌△ACE,进而得出△AEF为等腰直角三角形,根据两角对应相等的两三角形相似的判定可得△BCD∽△BEC,然后根据对应边成比例可得,然后根据勾股定理即可求解.详解:把AE逆时针旋转90°,使AE=AF交BD于F,根据旋转的性质可得△ABF≌△ACE,即BF=CE,∴△AEF是等腰直角三角形∵CD⊥BC,CE⊥BD∴∠BCD=∠CEB=90°∵∠DBC=∠CBD,∴△BCD∽△BEC∴∵BC=6,CD=2∴BD==即CE=∴DE=即BE=∴EF=——=∴AE=AF=故答案为:.点睛:此题主要考查了旋转变化的性质,等腰三角形的性质,相似三角形的判定与性质,勾股定理等知识,此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.17、50°【解析】
已知旋转角为80°,即∠DOB=80°,欲求∠α的度数,必须先求出∠AOB的度数,利用三角形内角和定理求解即可.【详解】解:由旋转的性质知:∠A=∠C=110°,∠D=∠B=40°;根据三角形内角和定理知:∠AOB=180°﹣110°﹣40°=30°;已知旋转角∠DOB=80°,则∠α=∠DOB﹣∠AOB=50°.故答案为50°.【点睛】此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,难度不大.18、【解析】设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===.故答案为.点睛:本题考查矩形的翻折,解题时要注意函数知识在生产生活中的实际应用,注意用数学知识解决实际问题能力的培养.三、解答题(共78分)19、(1)见解析;(2)见解析.【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF;由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OB=OD,又由OE=OF,可证得四边形DEBF是平行四边形,由平行四边形的性质可得BE=DF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△AOF≌△COE(ASA),∴OE=OF;(2)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵OE=OF,∴四边形DEBF是平行四边形,∴BE=DF.【点睛】本题考查的知识点是平行四边形的性质,解题关键是熟记平行四边形性质.20、(1);(1).【解析】
(1)由勾股定理知:c1=a1+b1.(1)由勾股定理知:a1=c1﹣b1.【详解】(1)由勾股定理知:c1=a1+b1=51+101=115.则.(1)由勾股定理知:a1=c1﹣b1=()1﹣11=.则.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21、乙船的速度是12海里/时.【解析】试题分析:首先理解方位角的概念,根据所给的方位角得到∠CAB=90°.根据勾股定理求得乙船所走的路程,再根据速度=路程÷时间,计算即可.试题解析:根据题意,得∠CAB=180°-40°-50°=90°,
∵AC=16×3=48(海里),BC=60海里,
∴在直角三角形ABC中,根据勾股定理得:AB=(海里).
则乙船的速度是36÷3=12海里/时.22、(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=1试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=12DE,PQ=MN=1考点:1.四边形综合题;2.综合题.23、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【解析】
(1)根据题意和表格中的数据可以得到y关于x的函数关系式;
(2)根据题意可以得到相应的不等式,从而可以解答本题;
(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025技术入股合作经营合同
- 2025年度虚拟股权激励协议范本:股权激励与员工离职限制合同3篇
- 二零二五年度租赁合同:民宿租赁服务协议3篇
- 2025关于加盟合同样本
- 2025写字楼租赁解除合同协议书
- 山东药品食品职业学院《灾害与环境遥感》2023-2024学年第一学期期末试卷
- 厦门华厦学院《光电检测技术及应用》2023-2024学年第一学期期末试卷
- 2025年中小学校园食品安全及营养配餐综合服务合同3篇
- 南京城市职业学院《管理信息系统分析与设计》2023-2024学年第一学期期末试卷
- 家长如何引导孩子进行自主学习
- 篆刻学ppt精品课件
- 建筑施工现场农民工维权告示牌
- 《枪炮、病菌与钢铁》-基于地理视角的历史解释(沐风学堂)
- 酒店爆炸及爆炸物品紧急处理应急预案
- 2022年版物理课程标准的特点探讨与实施建议
- 《中外资产评估准则》课件第4章 国际评估准则
- 幼儿园班级安全教育活动计划表
- 《银行柜台风险防控案例汇编》银行柜台风险案例
- 展馆精装修工程施工方案(98页)
- 香港联合交易所有限公司证券上市规则
- (高清正版)JJF 1908-2021 双金属温度计校准规范
评论
0/150
提交评论